Solveeit Logo

Question

Mathematics Question on Definite Integral

Let the function f: [0,2] \rightarrow R be defined as f(x)={eminx2,x[x]x[0,1] e[xlogex]x[1,2]f(x) = \begin{cases} e^{min}{x^2,x-[x]} & \quad x \in[0,1]\\\ e^{[x-log_ex]} & \quad x\in[1,2] \end{cases}
where [t] denotes the greatest integer less than or equal to t. Then the value of the integral 02xf(x)dx\int^2_0xf(x)dx is

A

(e2+12)\bigg(e^2+\frac{1}{2}\bigg)

B

2e-1

C

1+3e21+\frac{3e}{2}

D

2e122e-\frac{1}{2}

Answer

2e122e-\frac{1}{2}

Explanation

Solution

The Correct Option is(D):2e122e-\frac{1}{2}