Solveeit Logo

Question

Mathematics Question on Relations and functions

Let the function f:(0,π)Rf :(0, \pi) \rightarrow R be defined by
f(θ)=(sinθ+cosθ)2+(sinθcosθ)4 f (\theta)=(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{4} \text { }.
Suppose the function f has a local minimum at θ\theta precisely when \theta \in\left\\{\lambda_{1} \pi, \ldots, \lambda_{r} \pi\right\\}, where 0<λ1<<λr<10 < \lambda_{1} < \ldots < \lambda_{r} < 1 Then the value of λ1++λr\lambda_{1}+\ldots+\lambda_{r} is ______

Answer

Answer is 0.5.