Solveeit Logo

Question

Question: Let the function \(f : [0, 1] \rightarrow \mathbb{R}\) be defined as \[ f(x) = \max \left\{ \frac{|x...

Let the function f:[0,1]Rf : [0, 1] \rightarrow \mathbb{R} be defined as

f(x)=max{xyx+y+1:0y1}, for 0x1.f(x) = \max \left\{ \frac{|x - y|}{x + y + 1} : 0 \leq y \leq 1 \right\}, \text{ for } 0 \leq x \leq 1.

Then which of the following statements is correct?

A

ff is strictly increasing on [0,12][0, \tfrac{1}{2}] and strictly decreasing on [12,1][\tfrac{1}{2}, 1]

B

ff is strictly decreasing on [0,12][0, \tfrac{1}{2}] and strictly increasing on [12,1][\tfrac{1}{2}, 1]

C

ff is strictly increasing on [0,312]\bigl[0, \tfrac{\sqrt{3}-1}{2}\bigr] and strictly decreasing on [312,1]\bigl[\tfrac{\sqrt{3}-1}{2}, 1\bigr]

D

ff is strictly decreasing on [0,312]\bigl[0, \tfrac{\sqrt{3}-1}{2}\bigr] and strictly increasing on [312,1]\bigl[\tfrac{\sqrt{3}-1}{2}, 1\bigr]

Answer

ff is strictly decreasing on [0,312]\bigl[0, \tfrac{\sqrt{3}-1}{2}\bigr] and strictly increasing on [312,1]\bigl[\tfrac{\sqrt{3}-1}{2}, 1\bigr]

Explanation

Solution

Step 1. For fixed xx, split the maximisation over y[0,1]y\in[0,1] at y=xy=x:

  • yxy\le x: xyx+y+1=xyx+y+1\displaystyle \frac{|x-y|}{x+y+1}=\frac{x-y}{x+y+1} decreases in yy, so its maximum is at y=0y=0:
      A(x)=xx+1.\;A(x)=\frac{x}{x+1}.
  • yxy\ge x: xyx+y+1=yxx+y+1\displaystyle \frac{|x-y|}{x+y+1}=\frac{y-x}{x+y+1} increases in yy, so its maximum is at y=1y=1:
      B(x)=1xx+2.\;B(x)=\frac{1-x}{x+2}.

Thus

f(x)=max{A(x),B(x)}.f(x)=\max\bigl\{A(x),\,B(x)\bigr\}.

Step 2. Find the switch point by solving A(x)=B(x)A(x)=B(x):

xx+1=1xx+2    2x2+2x1=0    x=312.\frac{x}{x+1}=\frac{1-x}{x+2} \;\Longrightarrow\; 2x^2+2x-1=0 \;\Longrightarrow\; x=\frac{\sqrt3-1}{2}.

Step 3. Check monotonicity on each region:

  • For 0x<3120\le x<\tfrac{\sqrt3-1}2, B(x)B(x) dominates and
      B(x)=3(x+2)2<0\;B'(x)=\frac{-3}{(x+2)^2}<0 ⇒ strictly decreasing.
  • For 312<x1\tfrac{\sqrt3-1}2<x\le1, A(x)A(x) dominates and
      A(x)=1(x+1)2>0\;A'(x)=\frac1{(x+1)^2}>0 ⇒ strictly increasing.

Hence the correct behaviour is strictly decreasing on [0,312][0,\tfrac{\sqrt3-1}{2}] and strictly increasing on [312,1][\tfrac{\sqrt3-1}{2},1].