Question
Mathematics Question on Conic sections
Let the foci of the ellipse 16x2+7y2=1 and the hyperbola 144x2−αy2=251 coincide Then the length of the latus rectum of the hyperbola is:-
A
932
B
518
C
427
D
1027
Answer
1027
Explanation
Solution
16x2+7y2=1
⇒7=16(1−e2)⇒e=43
Foci of ellipse is (±ae,0)⇒(±3,0)
Now hyperbola be 144x2−αy2=251
25144x2−25αy2=1
Now a=512,b2=25α
Let eccentricity of hyperbola be e ae =3 (Given)
⇒512e=3⇒e=45
b2=a2(e2−1)
25α=25144(1625−1)⇒α=81
Hyperbola is 25144x2−2581y2=1
Now length of LR=a2b2=1027