Solveeit Logo

Question

Mathematics Question on Conic sections

Let the foci of the ellipse x216+y27=1\frac{x^2}{16}+\frac{y^2}{7}=1 and the hyperbola x2144y2α=125\frac{x^2}{144}-\frac{y^2}{\alpha}=\frac{1}{25} coincide Then the length of the latus rectum of the hyperbola is:-

A

329\frac{32}{9}

B

185\frac{18}{5}

C

274\frac{27}{4}

D

2710\frac{27}{10}

Answer

2710\frac{27}{10}

Explanation

Solution

16x2​+7y2​=1
⇒7=16(1−e2)⇒e=43​
Foci of ellipse is (±ae,0)⇒(±3,0)
Now hyperbola be 144x2​−αy2​=251​
25144​x2​−25α​y2​=1
Now a=512​,b2=25α​
Let eccentricity of hyperbola be e ae =3 (Given)
⇒512​e=3⇒e=45​
b2=a2(e2−1)
25α​=25144​(1625​−1)⇒α=81
Hyperbola is 25144​x2​−2581​y2​=1
Now length of LR=a2b2​=1027​