Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let the foci and length of the latus rectum of an ellipse x2a2+y2b2=1,a>bbe (±5,0) and 50,\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad a > b \quad \text{be } (\pm 5, 0) \text{ and } \sqrt{50}, respectively. Then, the square of the eccentricity of the hyperbola x2b2y2a2b2=1\frac{x^2}{b^2} - \frac{y^2}{a^2 b^2} = 1 equals _____

Answer

foci(±5,0);2b2a=50\text{foci} \equiv (\pm 5, 0); \quad \frac{2b^2}{a} = \sqrt{50}

ae=5andb2ae = 5 \quad \text{and} \quad b^2
=52a2b2=a2(1e2)= \frac{5\sqrt{2}a}{2} b^2 = a^2(1 - e^2)
=52a2= \frac{5\sqrt{2}a}{2}

    a(1e2)\implies a(1 - e^2)
=522= \frac{5\sqrt{2}}{2}

    5e(1e2)\implies \frac{5}{e(1 - e^2)}
=522= \frac{5\sqrt{2}}{2}

    22e2=e\implies \sqrt{2} - \sqrt{2}e^2 = e

    2e2+e2=0\implies \sqrt{2}e^2 + e - \sqrt{2} = 0

    2(e+2)1(1+2)=0\implies \sqrt{2}(e + \sqrt{2}) - 1(1 + \sqrt{2}) = 0

    (e+2)(2e1)=0\implies (e + \sqrt{2})(\sqrt{2}e - 1) = 0

e=2,e=12\therefore e = \sqrt{2}, \quad e = \frac{1}{\sqrt{2}}

For the hyperbola: x2b2y2a2b2=1\frac{x^2}{b^2} - \frac{y^2}{a^2b^2} = 1 a=52,b=5a = 5\sqrt{2}, \quad b = 5 a2b2=b2(e121)    e12=51a^2b^2 = b^2(e_1^2 - 1) \implies e_1^2 = 51