Question
Mathematics Question on Coordinate Geometry
Let the foci and length of the latus rectum of an ellipse a2x2+b2y2=1,a>bbe (±5,0) and 50, respectively. Then, the square of the eccentricity of the hyperbola b2x2−a2b2y2=1 equals _____
Answer
foci≡(±5,0);a2b2=50
ae=5andb2
=252ab2=a2(1−e2)
=252a
⟹a(1−e2)
=252
⟹e(1−e2)5
=252
⟹2−2e2=e
⟹2e2+e−2=0
⟹2(e+2)−1(1+2)=0
⟹(e+2)(2e−1)=0
∴e=2,e=21
For the hyperbola: b2x2−a2b2y2=1 a=52,b=5 a2b2=b2(e12−1)⟹e12=51