Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

Let the first term of a series be T1=6T_1 = 6 and its rthr^\text{th} term Tr=3Tr1+6rT_r = 3T_{r-1} + 6^r, r=2,3,,nr = 2, 3, \dots, n. If the sum of the first nn terms of this series is 15(n212n+39)(46n53n+1),\frac{1}{5} \left(n^2 - 12n + 39\right) \left(4 \cdot 6^n - 5 \cdot 3^n + 1\right), then nn is equal to ______.

Answer

For the given series:

Tr=3Tr1+6r,for r2.T_r = 3T_{r-1} + 6^r, \quad \text{for } r \geq 2.

For r=2r = 2:
T2=3T1+62=3×6+62=18+36=54.T_2 = 3T_1 + 6^2 = 3 \times 6 + 6^2 = 18 + 36 = 54. \hspace{1cm} (1)(1)

For r=3r = 3:
T3=3T2+63=3×54+216=162+216=378.T_3 = 3T_2 + 6^3 = 3 \times 54 + 216 = 162 + 216 = 378. \hspace{1cm} (2)(2)

General term:
Tr=3r1×6+3r2×62++6r.T_r = 3^{r-1} \times 6 + 3^{r-2} \times 6^2 + \cdots + 6^r.

Taking 66 common:
Tr=6×3r1(1+63+623r1).T_r = 6 \times 3^{r-1} \left( 1 + \frac{6}{3} + \frac{6^2}{3^{r-1}} \right).

Simplify:
Tr=6r1×(1+2+22++2r1),T_r = 6^{r-1} \times \left( 1 + 2 + 2^2 + \cdots + 2^{r-1} \right), which forms a geometric progression.

Sum of GP:
Tr=6r3r3.T_r = \frac{6^r - 3^r}{3}.

Sum of the series SnS_n:
Sn=r=1nTr=r=1n6r3r3.S_n = \sum_{r=1}^n T_r = \sum_{r=1}^n \frac{6^r - 3^r}{3}.

Separate the terms:
Sn=13(r=1n6rr=1n3r).S_n = \frac{1}{3} \left( \sum_{r=1}^n 6^r - \sum_{r=1}^n 3^r \right).

Sum of 6r6^r:
r=1n6r=66n15.\sum_{r=1}^n 6^r = 6 \frac{6^n - 1}{5}.

Sum of 3r3^r:
r=1n3r=33n12.\sum_{r=1}^n 3^r = 3 \frac{3^n - 1}{2}.

Substitute:
Sn=13(6(6n1)53(3n1)2).S_n = \frac{1}{3} \left( \frac{6(6^n - 1)}{5} - \frac{3(3^n - 1)}{2} \right).

Simplify:
Sn=15(4.6n5.3n+1).S_n = \frac{1}{5} \left( 4.6^n - 5.3^n + 1 \right).

Equating with the given sum:
15(n212n+39)(4.6n5.3n+1)=Sn.\frac{1}{5} \left( n^2 - 12n + 39 \right) \left( 4.6^n - 5.3^n + 1 \right) = S_n.

Equating coefficients:
n212n+36=0.n^2 - 12n + 36 = 0.

Solve:
n=6.n = 6.

Explanation

Solution

For the given series:

Tr=3Tr1+6r,for r2.T_r = 3T_{r-1} + 6^r, \quad \text{for } r \geq 2.

For r=2r = 2:
T2=3T1+62=3×6+62=18+36=54.T_2 = 3T_1 + 6^2 = 3 \times 6 + 6^2 = 18 + 36 = 54. \hspace{1cm} (1)(1)

For r=3r = 3:
T3=3T2+63=3×54+216=162+216=378.T_3 = 3T_2 + 6^3 = 3 \times 54 + 216 = 162 + 216 = 378. \hspace{1cm} (2)(2)

General term:
Tr=3r1×6+3r2×62++6r.T_r = 3^{r-1} \times 6 + 3^{r-2} \times 6^2 + \cdots + 6^r.

Taking 66 common:
Tr=6×3r1(1+63+623r1).T_r = 6 \times 3^{r-1} \left( 1 + \frac{6}{3} + \frac{6^2}{3^{r-1}} \right).

Simplify:
Tr=6r1×(1+2+22++2r1),T_r = 6^{r-1} \times \left( 1 + 2 + 2^2 + \cdots + 2^{r-1} \right), which forms a geometric progression.

Sum of GP:
Tr=6r3r3.T_r = \frac{6^r - 3^r}{3}.

Sum of the series SnS_n:
Sn=r=1nTr=r=1n6r3r3.S_n = \sum_{r=1}^n T_r = \sum_{r=1}^n \frac{6^r - 3^r}{3}.

Separate the terms:
Sn=13(r=1n6rr=1n3r).S_n = \frac{1}{3} \left( \sum_{r=1}^n 6^r - \sum_{r=1}^n 3^r \right).

Sum of 6r6^r:
r=1n6r=66n15.\sum_{r=1}^n 6^r = 6 \frac{6^n - 1}{5}.

Sum of 3r3^r:
r=1n3r=33n12.\sum_{r=1}^n 3^r = 3 \frac{3^n - 1}{2}.

Substitute:
Sn=13(6(6n1)53(3n1)2).S_n = \frac{1}{3} \left( \frac{6(6^n - 1)}{5} - \frac{3(3^n - 1)}{2} \right).

Simplify:
Sn=15(4.6n5.3n+1).S_n = \frac{1}{5} \left( 4.6^n - 5.3^n + 1 \right).

Equating with the given sum:
15(n212n+39)(4.6n5.3n+1)=Sn.\frac{1}{5} \left( n^2 - 12n + 39 \right) \left( 4.6^n - 5.3^n + 1 \right) = S_n.

Equating coefficients:
n212n+36=0.n^2 - 12n + 36 = 0.

Solve:
n=6.n = 6.