Solveeit Logo

Question

Mathematics Question on Conic sections

Let the equations of two ellipses be E1:x23+y22=1andE2:x216+y2b2=1E_{1} : \frac{x^{2}}{3}+\frac{y^{2}}{2}=1 and E_{2} : \frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1, If the product of their eccentricities is 12\frac{1}{2}, then the length of the minor axis of ellipse E2E_2 is:

A

88

B

99

C

44

D

22

Answer

44

Explanation

Solution

Given equations of ellipses
E1:x23+y22=1E_{1} : \frac{x^{2}}{3}+\frac{y^{2}}{2}=1
e1=123=13\Rightarrow e_{1}=\sqrt{1-\frac{2}{3}}=\frac{1}{\sqrt{3}}
E2:x261+y2b2=1E_{2} : \frac{x^{2}}{61}+\frac{y^{2}}{b^{2}}=1
e2=1b216=16b24\Rightarrow e_{2}=\sqrt{\frac{1-b^{2}}{16}}=\sqrt{\frac{16-b^{2}}{4}}
Also, given e1×e2=12e_{1}\times e_{2}=\frac{1}{2}
13×16b24=1216b2=12\Rightarrow \frac{1}{\sqrt{3}}\times\sqrt{\frac{16-b^{2}}{4}}=\frac{1}{2} \Rightarrow 16-b^{2}=12
b2=4\Rightarrow b^{2}=4
\therefore Length of minor axis of
E2=2b=2×2=4E_{2}=2b=2\times2=4