Question
Mathematics Question on Conic sections
Let the equations of two ellipses be E1:3x2+2y2=1andE2:16x2+b2y2=1, If the product of their eccentricities is 21, then the length of the minor axis of ellipse E2 is:
A
8
B
9
C
4
D
2
Answer
4
Explanation
Solution
Given equations of ellipses
E1:3x2+2y2=1
⇒e1=1−32=31
E2:61x2+b2y2=1
⇒e2=161−b2=416−b2
Also, given e1×e2=21
⇒31×416−b2=21⇒16−b2=12
⇒b2=4
∴ Length of minor axis of
E2=2b=2×2=4