Solveeit Logo

Question

Question: Let the equation of a curve passing through the point (0, 1) be given by y = \(\int_{}^{}{x^{2}.e^{x...

Let the equation of a curve passing through the point (0, 1) be given by y = x2.ex3\int_{}^{}{x^{2}.e^{x^{3}}}dx. If the equation of the curve is written in the form x = ƒ(y) then ƒ(y) is –

A

ln(3y23)\sqrt{\ln\left( \frac{3y - 2}{3} \right)}

B

3ln(23y3)3\sqrt{\ln\left( \frac{2 - 3y}{3} \right)}

C

ln(3y23)3\sqrt[3]{\ln\left( \frac{3y - 2}{3} \right)}

D

None of these

Answer

ln(3y23)3\sqrt[3]{\ln\left( \frac{3y - 2}{3} \right)}

Explanation

Solution

Q y = x2.ex3\int_{}^{}{x^{2}.e^{x^{3}}}dx

= 13\frac { 1 } { 3 } 3x2.ex3\int_{}^{}{3x^{2}.e^{x^{3}}}dx

y = 13\frac{1}{3} . ex3e^{x^{3}} + c

it is passing through (0, 1) then

1 = 13\frac{1}{3} + c Ž c = 23\frac{2}{3}

Then y = 13\frac { 1 } { 3 } ex3e^{x^{3}} + 23\frac{2}{3}

Ž = (3y2)3\frac{(3y - 2)}{3}

\ x3 = ln (3y23)\left( \frac{3y - 2}{3} \right) or x = ln(3y23)3\sqrt[3]{\ln\left( \frac{3y - 2}{3} \right)}