Solveeit Logo

Question

Question: Let the equation of a curve be x = a (q + sin q), y = a (1 – cos q). If q changes at a constant rat...

Let the equation of a curve be x = a (q + sin q), y = a

(1 – cos q). If q changes at a constant rate k then the rate of change of the slope of the tangent to the curve at q = p/3 is

A

2k/Ö3

B

k/Ö3

C

k

D

None of these

Answer

None of these

Explanation

Solution

dydx\frac{dy}{dx} = dydθdxdθ\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = asinθa(1+cosθ)\frac{a\sin\theta}{a(1 + \cos\theta)} = tan θ2\frac{\theta}{2},

\ the rate of change of the slope, i.e.,

dydt\frac{dy}{dt} = d(dydx)dt\frac{d\left( \frac{dy}{dx} \right)}{dt} = 12\frac{1}{2} sec2 θ2\frac{\theta}{2} . dθdt\frac{d\theta}{dt} = k2\frac{k}{2} sec2 θ2\frac{\theta}{2}

\ the required rate = k2\frac{k}{2}. sec2 π6\frac{\pi}{6} = k2\frac{k}{2}. (23)2\left( \frac{2}{\sqrt{3}} \right)^{2}.