Solveeit Logo

Question

Question: Let the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ contains the circle $(x-1)^2+y^2=1$ and has leas...

Let the ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 contains the circle (x1)2+y2=1(x-1)^2+y^2=1 and has least area. If a2+b2=2na^2+b^2=2n, then find the value of nNn \in N.

A

5

B

2

C

4

D

3

Answer

3

Explanation

Solution

The ellipse is

x2a2+y2b2=1,\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,

and it must contain the circle

(x1)2+y2=1.(x-1)^2+y^2=1.

For the ellipse of minimum area (i.e. minimum πab\pi ab) that contains the circle, the circle will be tangent to the ellipse. At the tangency point (x,y)(x,y) on the circle, we have

x2a2+y2b2=1and(x1)2+y2=1.\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad \text{and} \quad (x-1)^2+y^2=1.

Using the method of Lagrange multipliers to maximize

f(x,y)=x2a2+y2b2f(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2}

subject to

g(x,y)=(x1)2+y2=1,g(x,y) = (x-1)^2+y^2=1,

we obtain the conditions (for y0y\ne0):

2xa22λ(x1)=0,2yb22λy=0.\frac{2x}{a^2} - 2\lambda(x-1) = 0,\quad \frac{2y}{b^2} - 2\lambda y = 0.

For y0y\ne 0 the second equation gives λ=1b2\lambda = \frac{1}{b^2}. Plugging into the first gives:

xa2=x1b2x=a2a2b2.\frac{x}{a^2} = \frac{x-1}{b^2} \quad \Longrightarrow \quad x = \frac{a^2}{a^2-b^2}.

Let a2=ka^2=k and b2=db^2=d with k>dk>d. Then the tangency condition and the circle’s equation lead (after some algebra) to the relation

d(kd1)=kd.d\,(k-d-1) = k-d.

Writing D=kdD = k-d (with D>0D>0) the equation becomes:

d(D1)=Dd=DD1.d\,(D-1) = D \quad \Longrightarrow \quad d = \frac{D}{D-1}.

Thus,

a2=k=D+d=D+DD1=D2D1,b2=DD1.a^2 = k = D + d = D + \frac{D}{D-1} = \frac{D^2}{D-1}, \quad b^2 = \frac{D}{D-1}.

The ellipse’s area (ignoring π\pi) is proportional to ab=a2b2=DDD1ab = \sqrt{a^2b^2} = \frac{D\sqrt{D}}{D-1}.

To minimize the area, differentiate f(D)=D3/2D1f(D)=\frac{D^{3/2}}{D-1} with respect to DD. Calculating,

f(D)=D1/2[(D1)(32)D](D1)2.f'(D)= \frac{D^{1/2}[(D-1)(\frac{3}{2})-D]}{(D-1)^2}.

Setting the numerator to zero:

D1/2[32(D1)D]=032(D1)D=0.D^{1/2}\left[\frac{3}{2}(D-1)-D\right]=0 \quad \Longrightarrow \quad \frac{3}{2}(D-1)-D=0.

Solving,

3D32D2=0D3=0D=3.\frac{3D-3-2D}{2}=0 \quad \Longrightarrow \quad D-3=0 \quad \Longrightarrow \quad D=3.

Substitute D=3D=3 back:

a2=3231=92,b2=32.a^2 = \frac{3^2}{3-1} = \frac{9}{2},\quad b^2 = \frac{3}{2}.

Thus,

a2+b2=92+32=122=6.a^2+b^2 = \frac{9}{2}+\frac{3}{2} = \frac{12}{2} = 6.

Since a2+b2=2na^2+b^2=2n, we have:

2n=6n=3.2n=6 \quad \Longrightarrow \quad n=3.

Answer: Option (4) 3


Explanation (minimal):
Set up the tangency condition between the ellipse and circle using Lagrange multipliers. Derive x=a2a2b2x=\frac{a^2}{a^2-b^2} and, after algebra, express a2a^2 and b2b^2 in terms of D=a2b2D=a^2-b^2. Minimize the area function D3/2D1\frac{D^{3/2}}{D-1} with respect to DD and find D=3D=3. This yields a2+b2=6=2na^2+b^2=6=2n, so n=3n=3.