Solveeit Logo

Question

Mathematics Question on Hyperbola

Let the eccentricity of the hyperbola x2a2y2b2=1\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 be 54\frac{5}{4}. If the equation of the normal at the point (85,125)(\frac{8}{√5}, \frac{12}{5}) on the hyperbola is 8√5 x + β y = λ, then λ – β is equal to ____.

Answer

The correct answer is: 85.
x2a2y2b2=1(e=54)\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(e=\frac{5}{4})

So,

b2=a2(25161)b=34ab^2=a^2(\frac{25}{16}-1)⇒b=\frac{3}{4}a

Also, (85,125)(\frac{8}{√5}, \frac{12}{5}) lies on the given hyperbola.

So, Equation of normal

85x+15y=100⇒8\sqrt5x+15y=100

So,

β=15andλ=100β=15\,and \,λ=100

Gives

λβ=85λ-β=85