Solveeit Logo

Question

Mathematics Question on Conic sections

Let the eccentricity of the hyperbola x2a2y2b2=1\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 be reciprocal to that of the ellipse x2+4y2=4.x^2+4y^2=4. If the hyperbola passes through a focus of the ellipse, then

A

(a) the equation of the hyperbola is x23y22=1\frac{x^2}{3}-\frac{y^2}{2}=1

B

(b) a focus of the hyperbola is (2, 0)

C

(c) the eccentricity of the hyperbola is

D

(d) the equation of the hyperbola is x23y2=3{x^2}-3y^2=3

Answer

(d) the equation of the hyperbola is x23y2=3{x^2}-3y^2=3

Explanation

Solution

Here, equation of ellipse isx24+y21=1\frac{x^2}{4}+\frac{y^2}{1}=1
\Rightarrow e2=1b2a2=114=34e^2=1-\frac{b^2}{a^2}=1-\frac{1}{4}=\frac{3}{4}
\therefore e=32=\frac{\sqrt{3}}{2} and focus (±αe,0)(±3,0)(\pm \alpha e,0)\Rightarrow(\pm\sqrt{3},0)
For hyperbola x2a2y2b2=1,e12=1+b2a2\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,e^2_1=1+\frac{b^2}{a^2}
where, e12=1e2=431+b2a2=43e^2_1=\frac{1}{e^2}=\frac{4}{3}\Rightarrow 1+\frac{b^2}{a^2}=\frac{4}{3}
\therefore b2a2=13\frac{b^2}{a^2}=\frac{1}{3} ...........(i)
and hyperbola passes through (±3,0)(\pm\sqrt{3},0)
\Rightarrow 3a2=1α2=3\frac{3}{a^2}=1\Rightarrow \alpha^2=3...........(ii)
From Eqs. (i) and (ii), b21b^2-1...................(iii)
\therefore Equation of hyperbola is x23y21=1\frac{x^2}{3}-{y^2}{1}=1
Focus is (±αe1,0)(±3.23,0)(±2,0)(\pm \alpha e_1,0)\Rightarrow \bigg(\pm\sqrt{3}.\frac{2}{\sqrt3,0}\bigg)\Rightarrow(\pm2,0)
Hence, (b) and (d) are correct answers.