Solveeit Logo

Question

Question: Let the eccentricity of the hyperbola \(\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\...

Let the eccentricity of the hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 be reciprocal to that of the ellipse x2+4y2=4{{x}^{2}}+4{{y}^{2}}=4. If the hyperbola passes through a focus of the ellipse, then
(a) the equation of hyperbola is x23y22=1\dfrac {{{x}^{2}}}{3}-\dfrac{{{y}^{2}}}{2}=1
(b) A focus of hyperbola is (2,0)\left( 2,0 \right)
(c) the eccentricity of hyperbola is 53\sqrt{\dfrac{5}{3}}
(d) the equation of hyperbola is x23y2=3{{x}^{2}}-3{{y}^{2}}=3

Explanation

Solution

We can use formula for eccentricity and focus and hyperbola because in the given question we have a relation between the eccentricity of ellipse and hyperbola. Then we can use the focus of the ellipse to get the final answer.

Complete step-by-step solution:
In given question equation of ellipse is x2+4y2=4{{x}^{2}}+4{{y}^{2}}=4.
On dividing both sides from 4 to write it in standard form.
x2+4y24=44\Rightarrow \dfrac{{{x}^{2}}+4{{y}^{2}}}{4}=\dfrac{4}{4}
x24+4y24=1\Rightarrow \dfrac{{{x}^{2}}}{4}+\dfrac{4{{y}^{2}}}{4}=1
x24+y2=1\Rightarrow \dfrac{{{x}^{2}}}{4}+{{y}^{2}}=1
On comparing with x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1
a2=4,b2=1\Rightarrow {{a}^{2}}=4,\,{{b}^{2}}=1 where a is half of the major axis and b is half of the minor axis.
To calculate eccentricity of ellipse we can use b2=a2(1e2){{b}^{2}}={{a}^{2}}(1-{{e}^{2}})
We can arrange it as
b2=a2(1e2)\Rightarrow {{b}^{2}}={{a}^{2}}(1-{{e}^{2}})
b2a2=1e2\Rightarrow \dfrac{{{b}^{2}}}{{{a}^{2}}}=1-{{e}^{2}}
e2=1b2a2\Rightarrow {{e}^{2}}=1-\dfrac{{{b}^{2}}}{{{a}^{2}}}
On substitute a2=4,b2=1{{a}^{2}}=4,\,{{b}^{2}}=1
e2=114\Rightarrow {{e}^{2}}=1-\dfrac{1}{4}
e2=34\Rightarrow {{e}^{2}}=\dfrac{3}{4}
e=±34\Rightarrow e=\pm \sqrt{\dfrac{3}{4}}
e=32or32\Rightarrow e=\dfrac{\sqrt{3}}{2}\,or\,\dfrac{-\sqrt{3}}{2}
But eccentricity of the ellipse always lies between 0 to 1.
Hence
e=32\Rightarrow e=\dfrac{\sqrt{3}}{2}
As given in question eccentricity of a hyperbola is reciprocal of the eccentricity of the ellipse.
Let the equation of hyperbola is x2a12y2b12=1\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1
Hence eccentricity of hyperbola is e=23e=\dfrac{2}{\sqrt{3}}
To calculate eccentricity of hyperbola we can use b12=a12(e21){{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1) where a1{{a}_{1}} is the transverse axis of hyperbola and b1{{b}_{1}} is conjungate axis of hyperbola
On substituting e=23e=\dfrac{2}{\sqrt{3}}
b12=a12((23)21)\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}-1 \right)
b12=a12(431)\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4}{3}-1 \right)
b12=a12(433)\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4-3}{3} \right)
b12=a123\Rightarrow {{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}………………………………………….(i)
Co-ordinate of focus of ellipse is (±ae,0)\left( \pm ae,0 \right) if a2>b2{{a}^{2}}>{{b}^{2}}.
From equation of ellipse a=2,e=32a=2,\,e=\dfrac{\sqrt{3}}{2}
ae=2×32\Rightarrow ae=2\times \dfrac{\sqrt{3}}{2}
ae=3\Rightarrow ae=\sqrt{3}
Hence co-ordinate of focus of ellipse is (±3,0)\left( \pm \sqrt{3},0 \right)
As given, equation of hyperbola passes through focus of ellipse. Hence it will satisfy equation of hyperbola x2a12y2b12=1\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1
(3)2a12(0)2b12=1\Rightarrow \dfrac{{{\left( \sqrt{3} \right)}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{\left( 0 \right)}^{2}}}{{{b}_{1}}^{2}}=1
3a120=1\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}-0=1
3a12=1\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}=1
a12=3\Rightarrow {{a}_{1}}^{2}=3
On substituting a12=3{{a}_{1}}^{2}=3 in equation (i) b12=a123{{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}
b12=33\Rightarrow {{b}_{1}}^{2}=\dfrac{3}{3}
b12=1\Rightarrow {{b}_{1}}^{2}=1
Hence equation of hyperbola is by substituting value of a12{{a}_{1}}^{2} and b12{{b}_{1}}^{2}
x23y21=1\Rightarrow \dfrac{{{x}^{2}}}{3}-\dfrac{{{y}^{2}}}{1}=1
We can simplify by taking L.C.M
x23y23=1\Rightarrow \dfrac{{{x}^{2}}-3{{y}^{2}}}{3}=1
x23y2=3\Rightarrow {{x}^{2}}-3{{y}^{2}}=3
In general focus of hyperbola is (±a1e,0)\left( \pm {{a}_{1}}e,0 \right) if a12>b12{{a}_{1}}^{2}>{{b}_{1}}^{2}.
For hyperbola e=23,a1=3e=\dfrac{2}{\sqrt{3}},{{a}_{1}}=\sqrt{3}
a1e=3×23\Rightarrow {{a}_{1}}e=\sqrt{3}\times \dfrac{2}{\sqrt{3}}
a1e=2\Rightarrow {{a}_{1}}e=2
Hence focus of hyperbola is (±2,0)\left( \pm 2,0 \right).
So option b and d is correct.

Note: In general if equation of ellipse is x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 then eccentricity of ellipse can be calculated from relation b2=a2(1e2){{b}^{2}}={{a}^{2}}(1-{{e}^{2}}). Co-ordinate of focus of ellipse is (±ae,0)\left( \pm ae,0 \right) if a2>b2{{a}^{2}}>{{b}^{2}}.
If equation of hyperbola is x2a12y2b12=1\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1 then eccentricity of hyperbola can be calculated from relation b12=a12(e21){{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1).

In general eccentricity(e) of the conic section defines its shape and it is a non negative real number.
For ellipse,0<e<10 < e < 1
For hyperbola, e>1e >1
In equations of ellipse and hyperbola if any variable is common then it has to be represented separately to avoid any error arising due to common variable used in the equation