Solveeit Logo

Question

Mathematics Question on Ellipse

Let the eccentricity of an ellipse x2a2+y2b2=1\frac {x^2}{a^2}+\frac {y^2}{b^2}=1, a>ba>b, be 14\frac 14. If this ellipse passes through the point (425,3)(−4\sqrt {\frac 25},3), then a2+b2a^2 + b^2 is equal to :

A

29

B

31

C

32

D

34

Answer

31

Explanation

Solution

x2a2+y2b2=1\frac {x^2}{a^2}+\frac {y^2}{b^2}=1

(425)2a2+32b2=1⇒ \frac {(−4\sqrt {\frac 25})^2}{a^2}+\frac {3^2}{b^2}=1

32a2+9b2=1⇒ \frac {32}{a^2}+\frac {9}{b^2}=1 ....(i)

a2(1e2)=b2a^2(1-e^2)=b^2
a2(1116)=b2⇒ a^2(1-\frac {1}{16}) = b^2
⇒ 15a^2 = 16 b^2$$ ⇒ a^2 = \frac {16b^2}{15}
From (i)
6b2+9b2=1\frac {6}{b^2}+\frac {9}{b^2}=1
b2=15⇒ b^2 = 15
and a2=16a^2 = 16
a2+b2=15+16⇒ a^2+b^2 = 15+16 =31= 31

So, the correct option is (B): 3131