Solveeit Logo

Question

Question: let the conics x2=xy+1 and x2=xy-1 have eccentricities e1 and e2, then relation between e1 and e2 is...

let the conics x2=xy+1 and x2=xy-1 have eccentricities e1 and e2, then relation between e1 and e2 is

A

e1=e2

B

e1>e2

C

e1<e2

D

1/e1^2+1/e2^2=1

Answer

1/e1^2+1/e2^2=1

Explanation

Solution

The given equations of the conics are:

  1. x2=xy+1    x2xy1=0x^2 = xy + 1 \implies x^2 - xy - 1 = 0

  2. x2=xy1    x2xy+1=0x^2 = xy - 1 \implies x^2 - xy + 1 = 0

These are general second-degree equations of the form Ax2+Bxy+Cy2+Dx+Ey+F=0Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0.

For equation 1: A=1A=1, B=1B=-1, C=0C=0, D=0D=0, E=0E=0, F=1F=-1.

For equation 2: A=1A=1, B=1B=-1, C=0C=0, D=0D=0, E=0E=0, F=1F=1.

The nature of the conic is determined by the discriminant B24ACB^2 - 4AC.

For both equations, B24AC=(1)24(1)(0)=1>0B^2 - 4AC = (-1)^2 - 4(1)(0) = 1 > 0.

Since B24AC>0B^2 - 4AC > 0, both conics are hyperbolas.

To find the eccentricity of a hyperbola Ax2+Bxy+Cy2+F=0Ax^2 + Bxy + Cy^2 + F = 0 (when D=E=0D=E=0), we can use the eigenvalues of the matrix (AB/2B/2C)\begin{pmatrix} A & B/2 \\ B/2 & C \end{pmatrix}. The characteristic equation is det(AλB/2B/2Cλ)=0\det \begin{pmatrix} A-\lambda & B/2 \\ B/2 & C-\lambda \end{pmatrix} = 0, which is (Aλ)(Cλ)(B/2)2=0(A-\lambda)(C-\lambda) - (B/2)^2 = 0, or λ2(A+C)λ+ACB2/4=0\lambda^2 - (A+C)\lambda + AC - B^2/4 = 0.

The eigenvalues λ1,λ2\lambda_1, \lambda_2 are related to the coefficients of the transformed equation AX2+CY2+F=0A'X^2 + C'Y^2 + F = 0 (where A=λ1A'=\lambda_1 and C=λ2C'=\lambda_2) after rotating the axes to eliminate the xyxy term. The equation becomes λ1X2+λ2Y2+F=0\lambda_1 X^2 + \lambda_2 Y^2 + F = 0. Since it's a hyperbola, λ1\lambda_1 and λ2\lambda_2 have opposite signs. The standard form of a hyperbola is X2a2Y2b2=±1\frac{X^2}{a'^2} - \frac{Y^2}{b'^2} = \pm 1 or Y2a2X2b2=±1\frac{Y^2}{a'^2} - \frac{X^2}{b'^2} = \pm 1.

The transformed equation is λ1X2+λ2Y2=F\lambda_1 X^2 + \lambda_2 Y^2 = -F.

The coefficients of X2X^2 and Y2Y^2 in the standard form X2a2±Y2b2=1\frac{X^2}{a^2} \pm \frac{Y^2}{b^2} = 1 are related to λ1,λ2,F\lambda_1, \lambda_2, F.

The equation is λ1FX2+λ2FY2=1\frac{\lambda_1}{-F} X^2 + \frac{\lambda_2}{-F} Y^2 = 1.

Let A=λ1FA'' = \frac{\lambda_1}{-F} and C=λ2FC'' = \frac{\lambda_2}{-F}. The equation is AX2+CY2=1A'' X^2 + C'' Y^2 = 1.

For a hyperbola, AA'' and CC'' have opposite signs. If A">0A">0 and C"<0C"<0, the equation is X21/AY21/C=1\frac{X^2}{1/A''} - \frac{Y^2}{-1/C''} = 1, so a2=1/Aa^2 = 1/A'' and b2=1/Cb^2 = -1/C''. The eccentricity is e2=1+b2/a2=1+1/C1/A=1A/C=1λ1/Fλ2/F=1λ1/λ2e^2 = 1 + b^2/a^2 = 1 + \frac{-1/C''}{1/A''} = 1 - A''/C'' = 1 - \frac{\lambda_1/-F}{\lambda_2/-F} = 1 - \lambda_1/\lambda_2.

If A<0A''<0 and C">0C">0, the equation is Y21/CX21/A=1\frac{Y^2}{1/C''} - \frac{X^2}{-1/A''} = 1, so a2=1/Ca^2 = 1/C'' and b2=1/Ab^2 = -1/A''. The eccentricity is e2=1+b2/a2=1+1/A1/C=1C/A=1λ2/Fλ1/F=1λ2/λ1e^2 = 1 + b^2/a^2 = 1 + \frac{-1/A''}{1/C''} = 1 - C''/A'' = 1 - \frac{\lambda_2/-F}{\lambda_1/-F} = 1 - \lambda_2/\lambda_1.

In general, for λ1X2+λ2Y2+F=0\lambda_1 X^2 + \lambda_2 Y^2 + F = 0,

The eigenvalues are the roots of λ2(A+C)λ+ACB2/4=0\lambda^2 - (A+C)\lambda + AC - B^2/4 = 0.

For both conics, A=1,B=1,C=0A=1, B=-1, C=0.

λ2(1+0)λ+(1)(0)(1)2/4=0\lambda^2 - (1+0)\lambda + (1)(0) - (-1)^2/4 = 0

λ2λ1/4=0\lambda^2 - \lambda - 1/4 = 0

4λ24λ1=04\lambda^2 - 4\lambda - 1 = 0.

The eigenvalues are λ=4±164(4)(1)8=4±328=4±428=1±22\lambda = \frac{4 \pm \sqrt{16 - 4(4)(-1)}}{8} = \frac{4 \pm \sqrt{32}}{8} = \frac{4 \pm 4\sqrt{2}}{8} = \frac{1 \pm \sqrt{2}}{2}.

Let λ1=1+22\lambda_1 = \frac{1+\sqrt{2}}{2} and λ2=122\lambda_2 = \frac{1-\sqrt{2}}{2}. Note that λ1>0\lambda_1 > 0 and λ2<0\lambda_2 < 0.

For conic 1: F=1F=-1. The transformed equation is λ1X2+λ2Y21=0\lambda_1 X^2 + \lambda_2 Y^2 - 1 = 0, or λ1X2+λ2Y2=1\lambda_1 X^2 + \lambda_2 Y^2 = 1.

1+22X2+122Y2=1\frac{1+\sqrt{2}}{2} X^2 + \frac{1-\sqrt{2}}{2} Y^2 = 1.

X221+2+Y2212=1\frac{X^2}{\frac{2}{1+\sqrt{2}}} + \frac{Y^2}{\frac{2}{1-\sqrt{2}}} = 1.

X22(21)+Y22(2+1)=1\frac{X^2}{2(\sqrt{2}-1)} + \frac{Y^2}{-2(\sqrt{2}+1)} = 1.

X22(21)Y22(2+1)=1\frac{X^2}{2(\sqrt{2}-1)} - \frac{Y^2}{2(\sqrt{2}+1)} = 1.

This is a hyperbola of the form X2a2Y2b2=1\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1, with a2=2(21)a^2 = 2(\sqrt{2}-1) and b2=2(2+1)b^2 = 2(\sqrt{2}+1).

The eccentricity e1e_1 is given by e12=1+b2a2=1+2(2+1)2(21)=1+2+121=1+(2+1)2(21)(2+1)=1+2+1+2221=1+3+22=4+22e_1^2 = 1 + \frac{b^2}{a^2} = 1 + \frac{2(\sqrt{2}+1)}{2(\sqrt{2}-1)} = 1 + \frac{\sqrt{2}+1}{\sqrt{2}-1} = 1 + \frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)} = 1 + \frac{2+1+2\sqrt{2}}{2-1} = 1 + 3+2\sqrt{2} = 4+2\sqrt{2}.

For conic 2: F=1F=1. The transformed equation is λ1X2+λ2Y2+1=0\lambda_1 X^2 + \lambda_2 Y^2 + 1 = 0, or λ1X2+λ2Y2=1\lambda_1 X^2 + \lambda_2 Y^2 = -1.

1+22X2+122Y2=1\frac{1+\sqrt{2}}{2} X^2 + \frac{1-\sqrt{2}}{2} Y^2 = -1.

Multiply by -1: 1+22X2122Y2=1-\frac{1+\sqrt{2}}{2} X^2 - \frac{1-\sqrt{2}}{2} Y^2 = 1.

(1+2)2X2+(12)2Y2=1\frac{-(1+\sqrt{2})}{2} X^2 + \frac{-(1-\sqrt{2})}{2} Y^2 = 1.

212Y22+12X2=1\frac{\sqrt{2}-1}{2} Y^2 - \frac{\sqrt{2}+1}{2} X^2 = 1.

Y2221X222+1=1\frac{Y^2}{\frac{2}{\sqrt{2}-1}} - \frac{X^2}{\frac{2}{\sqrt{2}+1}} = 1.

Y22(2+1)X22(21)=1\frac{Y^2}{2(\sqrt{2}+1)} - \frac{X^2}{2(\sqrt{2}-1)} = 1.

This is a hyperbola of the form Y2a2X2b2=1\frac{Y^2}{a^2} - \frac{X^2}{b^2} = 1, with a2=2(2+1)a^2 = 2(\sqrt{2}+1) and b2=2(21)b^2 = 2(\sqrt{2}-1).

The eccentricity e2e_2 is given by e22=1+b2a2=1+2(21)2(2+1)=1+212+1=1+(21)2(2+1)(21)=1+2+12221=1+322=422e_2^2 = 1 + \frac{b^2}{a^2} = 1 + \frac{2(\sqrt{2}-1)}{2(\sqrt{2}+1)} = 1 + \frac{\sqrt{2}-1}{\sqrt{2}+1} = 1 + \frac{(\sqrt{2}-1)^2}{(\sqrt{2}+1)(\sqrt{2}-1)} = 1 + \frac{2+1-2\sqrt{2}}{2-1} = 1 + 3-2\sqrt{2} = 4-2\sqrt{2}.

We have e12=4+22e_1^2 = 4 + 2\sqrt{2} and e22=422e_2^2 = 4 - 2\sqrt{2}.

Consider e12+e22=14+22+1422=422+4+22(4+22)(422)=816(22)2=8168=88=1e_1^{-2} + e_2^{-2} = \frac{1}{4+2\sqrt{2}} + \frac{1}{4-2\sqrt{2}} = \frac{4-2\sqrt{2} + 4+2\sqrt{2}}{(4+2\sqrt{2})(4-2\sqrt{2})} = \frac{8}{16 - (2\sqrt{2})^2} = \frac{8}{16 - 8} = \frac{8}{8} = 1.

So, e12+e22=1e_1^{-2} + e_2^{-2} = 1, which means 1e12+1e22=1\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1.