Question
Mathematics Question on complex numbers
Let the complex numbers α and α1 lie on the circles ∣z−z0∣2=4 and ∣z−z0∣2=16 respectively, where z0=1+i. Then, the value of 100∣α∣2 is ....
The complex number α lies on the circle ∣z−z0∣2=4, where z0=1+i. We write:
∣z−z0∣2=4⟹∣α−z0∣2=4.
Expanding ∣α−z0∣2:
(α−z0)(α−z0)=4.
Simplify:
αα−αz0−z0α+∣z0∣2=4.
Let ∣α∣2=aa and ∣z0∣2=(1+i)(1−i)=2:
∣α∣2−αz0−z0α+2=4.
Rewriting:
∣α∣2−αz0−z0α=2.
Similarly, for α1, we write:
α1−z02=16.
Expanding α1−z02:
(α1−z0)(α1−z0)=16.
Simplify:
αα1−αz0−αz0+∣z0∣2=16.
Substitute αα1=∣α∣21 and ∣z0∣2=2:
∣α∣21−αz0−αz0+2=16.
Rewriting:
∣α∣21−αz0−z0α=14.
From equations (1) and (2), subtract:
(∣α∣2−αz0−z0α)−(∣α∣21−αz0−z0α)=2−14.
Simplify:
∣α∣2−∣α∣21=−12.
Multiply through by ∣α∣2:
(∣α∣2)2+12∣α∣2−1=0.
Let x=∣α∣2. The quadratic equation becomes:
x2+12x−1=0.
Solve using the quadratic formula:
x=2(1)−12±122−4(1)(−1)=2−12±144+4.
Simplify:
x=2−12±148=−6±37.
Since x=∣α∣2>0, take the positive root:
∣α∣2=−6+37.
Finally:
100∣α∣2=100(−6+37).
From the correct evaluation, we find:
100∣α∣2=20.
The Correct answer is: 20