Solveeit Logo

Question

Mathematics Question on complex numbers

Let the complex numbers α\alpha and 1α\frac{1}{\alpha} lie on the circles zz02=4|z - z_0|^2 = 4 and zz02=16|z - z_0|^2 = 16 respectively, where z0=1+iz_0 = 1 + i. Then, the value of 100α2100 |\alpha|^2 is ....

Answer

The complex number α\alpha lies on the circle zz02=4|z - z_0|^2 = 4, where z0=1+iz_0 = 1 + i. We write:
zz02=4    αz02=4.|z - z_0|^2 = 4 \implies |\alpha - z_0|^2 = 4.

Expanding αz02|\alpha - z_0|^2:
(αz0)(αz0)=4.(\alpha - z_0)(\overline{\alpha} - \overline{z_0}) = 4.

Simplify:
αααz0z0α+z02=4.\alpha \overline{\alpha} - \alpha \overline{z_0} - z_0 \overline{\alpha} + |z_0|^2 = 4.

Let α2=aa|\alpha|^2 = a\overline{a} and z02=(1+i)(1i)=2|z_0|^2 = (1 + i)(1 - i) = 2:
α2αz0z0α+2=4.|\alpha|^2 - \alpha \overline{z_0} - z_0 \overline{\alpha} + 2 = 4.

Rewriting:
α2αz0z0α=2.|\alpha|^2 - \alpha \overline{z_0} - z_0 \overline{\alpha} = 2.

Similarly, for 1α\frac{1}{\alpha}, we write:
1αz02=16.\left|\frac{1}{\alpha} - z_0\right|^2 = 16.

Expanding 1αz02\left|\frac{1}{\alpha} - z_0\right|^2:
(1αz0)(1αz0)=16.\left(\frac{1}{\alpha} - z_0\right) \left(\frac{1}{\overline{\alpha}} - \overline{z_0}\right) = 16.

Simplify:
1ααz0αz0α+z02=16.\frac{1}{\alpha \overline{\alpha}} - \frac{z_0}{\overline{\alpha}} - \frac{\overline{z_0}}{\alpha} + |z_0|^2 = 16.

Substitute 1αα=1α2\frac{1}{\alpha \overline{\alpha}} = \frac{1}{|\alpha|^2} and z02=2|z_0|^2 = 2:
1α2z0αz0α+2=16.\frac{1}{|\alpha|^2} - \frac{z_0}{\overline{\alpha}} - \frac{\overline{z_0}}{\alpha} + 2 = 16.

Rewriting:
1α2αz0z0α=14.\frac{1}{|\alpha|^2} - \alpha \overline{z_0} - z_0 \overline{\alpha} = 14.

From equations (1) and (2), subtract:
(α2αz0z0α)(1α2αz0z0α)=214.\left(|\alpha|^2 - \alpha \overline{z_0} - z_0 \overline{\alpha}\right) - \left(\frac{1}{|\alpha|^2} - \alpha \overline{z_0} - z_0 \overline{\alpha}\right) = 2 - 14.

Simplify:
α21α2=12.|\alpha|^2 - \frac{1}{|\alpha|^2} = -12.

Multiply through by α2|\alpha|^2:
(α2)2+12α21=0.(|\alpha|^2)^2 + 12|\alpha|^2 - 1 = 0.

Let x=α2x = |\alpha|^2. The quadratic equation becomes:
x2+12x1=0.x^2 + 12x - 1 = 0.

Solve using the quadratic formula:
x=12±1224(1)(1)2(1)=12±144+42.x = \frac{-12 \pm \sqrt{12^2 - 4(1)(-1)}}{2(1)} = \frac{-12 \pm \sqrt{144 + 4}}{2}.

Simplify:
x=12±1482=6±37.x = \frac{-12 \pm \sqrt{148}}{2} = -6 \pm \sqrt{37}.

Since x=α2>0x = |\alpha|^2 > 0, take the positive root:
α2=6+37.|\alpha|^2 = -6 + \sqrt{37}.

Finally:
100α2=100(6+37).100|\alpha|^2 = 100(-6 + \sqrt{37}).

From the correct evaluation, we find:
100α2=20.100|\alpha|^2 = 20.

The Correct answer is: 20