Solveeit Logo

Question

Mathematics Question on binomial expansion formula

Let the coefficients of x–1 and x–3 in the expansion of
(2x151x15)15,x>0(2x^{\frac{1}{5}} - \frac{1}{x^{\frac{1}{5}}} )^{15} , x > 0be m and n respectively. If r is a positive integer such that
mn2=15Cr.2rmn² = ^{15}C_r.2^r
then the value of r is equal to ______.

Answer

The correct answer is 5
Given : Expansion is (2x151x15)15(2x^{\frac{1}{5}} - \frac{1}{x^{\frac{1}{5}}} )^{15}
Now , the general term of given expansion is
T_{p+1} = (-1)^{p}$$^{15}C_p 2^{15-p} (x^{\frac{1}{5}})^{15-p}.(\frac{1}{x^{\frac{1}{5}}})^p
=(1)p= (-1)^p 15Cp215p.x152p5^{15}C_p 2^{15-p} . x^{\frac{15-2p}{5}}
For coefficient of x1,152p5=1x^{-1}, \frac{15-2p}{5} = -1
⇒ p = 10
Therefore , m=15C1025m= ^{15}C_{10} 2^5
⇒ p = 15
n=15C1520=1∴ n = - ^{15}C_{15} 2^0 = -1
Now , mn2 = 15C1025
⇒ mn² = 15C5 25
⇒ 15Cr 2r = 15C5 25
⇒ r = 5