Solveeit Logo

Question

Mathematics Question on Binomial theorem

Let the coefficient of xrx^r in the expansion of (x+3)n1+(x+3)n2(x+2)+(x+3)n3(x+2)2++(x+2)n1(x + 3)^{n-1} + (x + 3)^{n-2} (x + 2) + (x + 3)^{n-3} (x + 2)^2 + \ldots + (x + 2)^{n-1}
be αr\alpha_r. If r=0nαr=βnγn\sum_{r=0}^n \alpha_r = \beta^n - \gamma^n, β,γN\beta, \gamma \in \mathbb{N}, then the value of β2+γ2\beta^2 + \gamma^2 equals \\_\\_\\_\\_\\_.

Answer

Consider the expansion:

(x+3)n1+(x+3)n2(x+2)+(x+3)n3(x+2)2++(x+2)n1(x + 3)^{n-1} + (x + 3)^{n-2}(x + 2) + (x + 3)^{n-3}(x + 2)^2 + \ldots + (x + 2)^{n-1}

The sum of coefficients r=0nαr\sum_{r=0}^{n} \alpha_r is given by:

r=0nαr=4n1+4n2×3+4n3×32++3n1\sum_{r=0}^{n} \alpha_r = 4^{n-1} + 4^{n-2} \times 3 + 4^{n-3} \times 3^2 + \ldots + 3^{n-1}

This forms a geometric series with the first term 4n14^{n-1} and common ratio 34\frac{3}{4}:

r=0nαr=4n1(1+34+(34)2++(34)n1)\sum_{r=0}^{n} \alpha_r = 4^{n-1} \left(1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \ldots + \left(\frac{3}{4}\right)^{n-1}\right)

The sum of the geometric series is given by:

r=0nαr=4n1×1(34)n134=4n3n\sum_{r=0}^{n} \alpha_r = 4^{n-1} \times \frac{1 - \left(\frac{3}{4}\right)^n}{1 - \frac{3}{4}} = 4^n - 3^n

Given:

r=0nαr=βnγn\sum_{r=0}^{n} \alpha_r = \beta^n - \gamma^n

Comparing:

β=4,γ=3\beta = 4, \quad \gamma = 3

The value of β2+γ2\beta^2 + \gamma^2 is:

β2+γ2=42+32=16+9=25\beta^2 + \gamma^2 = 4^2 + 3^2 = 16 + 9 = 25