Question
Mathematics Question on Binomial theorem
Let the coefficient of xr in the expansion of (x+3)n−1+(x+3)n−2(x+2)+(x+3)n−3(x+2)2+…+(x+2)n−1
be αr. If ∑r=0nαr=βn−γn, β,γ∈N, then the value of β2+γ2 equals \\_\\_\\_\\_\\_.
Answer
Consider the expansion:
(x+3)n−1+(x+3)n−2(x+2)+(x+3)n−3(x+2)2+…+(x+2)n−1
The sum of coefficients ∑r=0nαr is given by:
∑r=0nαr=4n−1+4n−2×3+4n−3×32+…+3n−1
This forms a geometric series with the first term 4n−1 and common ratio 43:
∑r=0nαr=4n−1(1+43+(43)2+…+(43)n−1)
The sum of the geometric series is given by:
∑r=0nαr=4n−1×1−431−(43)n=4n−3n
Given:
∑r=0nαr=βn−γn
Comparing:
β=4,γ=3
The value of β2+γ2 is:
β2+γ2=42+32=16+9=25