Solveeit Logo

Question

Mathematics Question on Variance and Standard Deviation

Let, the coefficient of variation of two datasets be 5050 and 7575 ,respectively and the corresponding variances be 2525 and 3636,respectively.Also let x1x_1 and x2x_2 denote the corresponding sample means. Then x1+x2x_1+x_2 is ?

A

22

B

1010

C

1818

D

1616

E

2020

Answer

1818

Explanation

Solution

Given data:

Let, the Co-efficient of variation of 1st data = CV1=50CV_1=50

Let, the Co-efficient of variation of 2nd data = CV2=75CV_2=75

and Variance (σ12)=25(σ_1^{2})=25 . So, σ1=5 σ_1=5

    Variance $(σ_2^{2})=36$ . So, $ σ_1=6$

We know that,

CV1=σ1x1×100CV_1=\dfrac{σ_1}{x_1} × 100

x1=5CV1×100⇒ x_1=\dfrac{5}{CV_1} × 100

x1=550×100⇒ x_1=\dfrac{5}{50} × 100

x1=10⇒ x_1=10

Similarly solving for 2nd data we get

x2=8⇒x_2=8

Hence , x1+x2=10+8=18x_1+x_2=10+8=18 (_Ans.)