Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let the circles C1:(xα)2+(yβ)2=r12C_1 : (x - \alpha)^2 + (y - \beta)^2 = r_1^2 and C2:(x8)2+(y152)2=r22C_2 : (x - 8)^2 + \left( y - \frac{15}{2} \right)^2 = r_2^2 touch each other externally at the point (6,6)(6, 6). If the point (6,6)(6, 6) divides the line segment joining the centres of the circles C1C_1 and C2C_2 internally in the ratio 2:12 : 1, then (α+β)+4(r12+r22)(\alpha + \beta) + 4\left(r_1^2 + r_2^2\right) equals _____.

A

110

B

130

C

125

D

145

Answer

130

Explanation

Solution

The centers of the circles are (α,β)(\alpha, \beta) for C1C_1 and (8,152)(8, \frac{15}{2}) for C2C_2.
Since the point (6,6)(6, 6) divides the line segment joining the centers in the ratio 2:12:1, apply the section formula:
16+α3=6    16+α=18    α=2,\frac{16 + \alpha}{3} = 6 \implies 16 + \alpha = 18 \implies \alpha = 2,
15+β3=6    15+β=18    β=3.\frac{15 + \beta}{3} = 6 \implies 15 + \beta = 18 \implies \beta = 3.
Thus, the center of C1C_1 is (α,β)=(2,3)(\alpha, \beta) = (2, 3).
The circles touch externally at the point (6,6)(6, 6), so the distance between the centers equals the sum of the radii:
C1C2=r1+r2.C_1C_2 = r_1 + r_2.
Using the distance formula:
C1C2=(28)2+(3152)2,C_1C_2 = \sqrt{(2 - 8)^2 + \left(3 - \frac{15}{2}\right)^2},
C1C2=(6)2+(92)2=36+814=1444+814=2254=152.C_1C_2 = \sqrt{(-6)^2 + \left(-\frac{9}{2}\right)^2} = \sqrt{36 + \frac{81}{4}} = \sqrt{\frac{144}{4} + \frac{81}{4}} = \sqrt{\frac{225}{4}} = \frac{15}{2}.
Thus, r1+r2=152r_1 + r_2 = \frac{15}{2}.
Now, since the point (6,6)(6, 6) lies on both circles, for C1C_1:
(6α)2+(6β)2=r12,(6 - \alpha)^2 + (6 - \beta)^2 = r_1^2,
(62)2+(63)2=r12    42+32=r12    r12=16+9=25.(6 - 2)^2 + (6 - 3)^2 = r_1^2 \implies 4^2 + 3^2 = r_1^2 \implies r_1^2 = 16 + 9 = 25.
So, r1=5r_1 = 5. Substituting r1=5r_1 = 5 into r1+r2=152r_1 + r_2 = \frac{15}{2}:
5+r2=152    r2=1525=52.5 + r_2 = \frac{15}{2} \implies r_2 = \frac{15}{2} - 5 = \frac{5}{2}.
Finally, calculate (α+β)+4(r12+r22)(\alpha + \beta) + 4(r_1^2 + r_2^2):
α+β=2+3=5,\alpha + \beta = 2 + 3 = 5,
r12+r22=25+(52)2=25+254=1004+254=1254,r_1^2 + r_2^2 = 25 + \left(\frac{5}{2}\right)^2 = 25 + \frac{25}{4} = \frac{100}{4} + \frac{25}{4} = \frac{125}{4},
4(r12+r22)=41254=125.4(r_1^2 + r_2^2) = 4 \cdot \frac{125}{4} = 125.
Thus:
(α+β)+4(r12+r22)=5+125=130.(\alpha + \beta) + 4(r_1^2 + r_2^2) = 5 + 125 = 130.