Solveeit Logo

Question

Mathematics Question on Parabola

Let the circles C1:x2+y2=9C_{1} : x_{2} + y_{2} = 9 and C2:(x??3)2+(y??4)2=16C_{2} : \left(x ??3\right)^{2} + \left(y ??4\right)^{2} = 16, intersect at the points X and Y. Suppose that another circle C3:(x??h)2+(y??k)2=r2C_{3} : \left(x ??h\right)^{2} + \left(y ??k\right)^{2} = r^{2} satisfies the following conditions: (i)\left(i\right) \quad centre of C3C_{3} is collinear with the centres of C1C_{1} and C2C_{2}, (ii)C1\left(ii\right) \quad C_{1} and C2C_{2} both lie inside C3C_{3}, and (iii)C3\left(iii\right)\quad C_{3} touches C1C_{1} at M and C2C_{2} at N. Let the line through X and Y intersect C3C_3 at Z and W, and let a common tangent of C1C_{1} and C3C_{3} be a tangent to the parabola x2=8ay.x^{2} = 8ay. There are some expressions given in the List-I whose values are given in List-II below: Which of the following is the only INCORRECT combination?

A

(I),(P)

B

(IV), (U)

C

(III), (R)

D

(IV), (S)

Answer

(IV), (S)

Explanation

Solution

MC1+C1C2+C2N=2rMC_{1}+C_{1}C_{2}+C_{2}N=2r 3+5+4=2rr=6\Rightarrow 3+5+4=2r \Rightarrow r=6 \Rightarrow Radius of C3=6C_{3}=6 Suppose centre of C3be(0+r4cosθ,θ+r4sinθ),{r4=C1C3=3 tanθ=43}C_{3} be \left(0+r_{4}\,cos\,\theta, \theta+r_{4}\,sin\,\theta\right),\begin{Bmatrix}r_{4}=C_{1}&C_{3}=3\\\ tan&\theta=\frac{4}{3}\end{Bmatrix} C3=(95,125)=(h.k)2h+k=6C_{3}=\left(\frac{9}{5}, \frac{12}{5}\right)=\left(h.k\right) \Rightarrow 2h+k=6 Equation of ZWZW and XYis3x+4y9=0XY is 3x + 4y - 9 = 0 (commonchordofcircleC1=0andC2=0)\left(common\, chord\, of\, circle\, C_{1} = 0\, and \,C_{2} = 0\right) ZW=2r2p2=2465(wherer=6andp=65)ZW=2\sqrt{r^{2}-p^{2}}=\frac{24\sqrt{6}}{5}\left(where\,r=6\,and\,p=\frac{6}{5}\right) XY=2r12=p12=245(wherer1=3andp1=95)XY=2\sqrt{r^{2}_{1}=p^{2}_{1}}=\frac{24}{5}\left(where\,r_{1}=3\,and\,p_{1}=\frac{9}{5}\right) LengthofZWLengthofXY=6\frac{Length\, of ZW}{Length\, of XY}=\sqrt{6} Let length of perpendicular from MM to ZWbeλ,λ=3+95=245ZW be \lambda, \lambda=3+\frac{9}{5}=\frac{24}{5} AreaofΔMZNAreaofΔZMW=12(MN)×12(ZW)12×ZW×λ=12MNλ=54\frac{Area\,of \, \Delta MZN}{Area\, of \,\Delta ZMW}=\frac{\frac{1}{2}\left(MN\right)\times\frac{1}{2}\left(ZW\right)}{\frac{1}{2}\times ZW\times\lambda}=\frac{1}{2} \frac{MN}{\lambda}=\frac{5}{4} C3:(x95)2+(y125)2=62C_{3} : \left(x-\frac{9}{5}\right)^{2}+\left(y-\frac{12}{5}\right)^{2}=6^{2} C1:x2+y29=0C_{1} : x^{2}+y^{2}-9=0 common tangent to C1C_1 and C3C_3 is common chord of C1C_1 and C3C_3 is 3x+4y+15=0.3x + 4y + 15 = 0. Now 3x+4y+15=03x + 4y + 15 = 0 is tangent to parabola x2=8αyx^2 = 8\alpha y. x2=8α(3x154)4x2+24αx+120α=0x^{2}=8\alpha\left(\frac{-3x-15}{4}\right) \Rightarrow 4x^{2}+24\alpha x+120\alpha=0 D=0α=103D=0 \Rightarrow \alpha=\frac{10}{3}