Solveeit Logo

Question

Mathematics Question on Surface Areas and Volumes

Let the area of the triangle with vertices A(1,α),B(α,0)A(1, α), B(α, 0) and C(0,α)C(0, α) be 44 sq. units. If the points (α,α),(α,α)(α, –α), (–α, α) and (α2,β)(α^2, β) are collinear, then ββ is equal to

A

64

B

-8

C

-64

D

512

Answer

-64

Explanation

Solution

Vertices of ΔABCΔABC are A(1,α),B(α,0)  andC(0,α)∵ A(1, α), B(α, 0) \;and C(0, α)

The Area of ΔABC=4ΔABC = 4

121α1 α01\0α1=4∴ |\frac{1}{2}| \begin {vmatrix}1 &α& 1\\\ α &0 &1 \\\0 &α &1 \end{vmatrix}=4

1(1α)α(α)+α2=8⇒ | 1 (1- α)-α(α)+α^2|=8

α=+8⇒ α = +- 8

Then, (α,α),(α,α)  and  (α2,β)(α, –α), (–α, α) \;and\; (α^2, β)

881 881 64β1=0=881\881\64α1∴ \begin{vmatrix}8& -8& 1\\\ -8& 8& 1\\\ 64 &β &1 \end{vmatrix} = 0 = \begin{vmatrix} -8& 8 &1 \\\8 &-8 &1 \\\64 &α &1 \end{vmatrix}\

8(8β)+8(864)+1(8β8×64)=0⇒ 8(8- β)+8(-8-64)+1(-8β-8 ×64) = 0
8β72β64=0⇒ 8- β - 72 - β -64 = 0
β=64⇒ β = -64

Hence, the correct option is (C): 64-64