Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let the area of the region (x,y):x2y+40,x+2y20,x+4y28,y0\\{(x, y) : x - 2y + 4 \geq 0, x + 2y^2 \geq 0, x + 4y^2 \leq 8, y \geq 0\\} be mn\frac{m}{n}, where mm and nn are coprime numbers. Then m+nm + n is equal to ______.

Answer

Given the region defined by:

x2y+40,x+2y20,x+4y28,y0x - 2y + 4 \geq 0, \quad x + 2y^2 \geq 0, \quad x + 4y^2 \leq 8, \quad y \geq 0

We need to find the area AA of this region and express it in the form mn\frac{m}{n} where mm and nn are coprime numbers.

Step 1. Setting Up the Integral: The area is given by:
A=08[(84y2)(2y2)]dy+82[(84y2)(2y4)]dyA = \int_0^{\sqrt{8}} \left[ (8 - 4y^2) - (-2y^2) \right] \, dy + \int_{\sqrt{8}}^2 \left[ (8 - 4y^2) - (2y - 4) \right] \, dy

Step 2. Evaluating the First Integral:

02[(84y2)(2y2)]dy=02(82y2)dy\int_0^{\sqrt{2}} \left[ (8 - 4y^2) - (-2y^2) \right] \, dy = \int_0^{\sqrt{2}} (8 - 2y^2) \, dy

Integrating term by term:

02(82y2)dy=[8y2y33]02\int_0^{\sqrt{2}} (8 - 2y^2) \, dy = \left[ 8y - \frac{2y^3}{3} \right]_0^{\sqrt{2}}

Substituting the limits:

=(8×22(2)33)(00)=1623= \left( 8 \times \sqrt{2} - \frac{2 \cdot (\sqrt{2})^3}{3} \right) - (0 - 0) = \frac{16\sqrt{2}}{3}

Step 3. Evaluating the Second Integral:

22[(84y2)(2y4)]dy\int_{\sqrt{2}}^2 \left[ (8 - 4y^2) - (2y - 4) \right] \, dy

Simplifying the integrand:

=22(84y22y+4)dy=22(124y22y)dy= \int_{\sqrt{2}}^2 (8 - 4y^2 - 2y + 4) \, dy = \int_{\sqrt{2}}^2 (12 - 4y^2 - 2y) \, dy

Integrating term by term:

=[12y4y33y2]22= \left[ 12y - \frac{4y^3}{3} - y^2 \right]_{\sqrt{2}}^2
Substituting the limits:

=(243234)(12216232)=10712= \left( 24 - \frac{32}{3} - 4 \right) - \left( 12\sqrt{2} - \frac{16\sqrt{2}}{3} - 2 \right) = \frac{107}{12}

Step 4. Final Area Calculation: The total area is:

A=1623+10712A = \frac{16\sqrt{2}}{3} + \frac{107}{12}

Expressing AA in the form mn\frac{m}{n} where mm and nn are coprime, we have m+n=119m + n = 119.