Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

Let the area of the region (x,y):0x3,0yminx2+2,2x+2\\{(x, y): 0 \leq x \leq 3, 0 \leq y \leq \min\\{x^2 + 2, 2x + 2\\}\\} be AA. Then 12A12A is equal to ______.

Answer

To find the area AA, we need to evaluate the integral over the region bounded by y=x2+2y = x^2 + 2 and y=2x+2y = 2x + 2 from x=0x = 0 to x=3x = 3.

Step 1. Set up the area as the sum of two integrals based on the intersection point of y=x2+2y = x^2 + 2 and y=2x+2y = 2x + 2, which is x=2x = 2:**
A=02(x2+2)dx+23(2x+2)dxA = \int_{0}^{2} (x^2 + 2) \, dx + \int_{2}^{3} (2x + 2) \, dx

Step 2. Evaluate each integral:
- For 02(x2+2)dx\int_{0}^{2} (x^2 + 2) \, dx:
=[x33+2x]02=83+4=203= \left[ \frac{x^3}{3} + 2x \right]_0^2 = \frac{8}{3} + 4 = \frac{20}{3}
- For 23(2x+2)dx\int_{2}^{3} (2x + 2) \, dx:
=[x2+2x]23=(9+6)(4+4)=7= \left[ x^2 + 2x \right]_2^3 = (9 + 6) - (4 + 4) = 7

Step 3. Combine the results:
A=203+7=413A = \frac{20}{3} + 7 = \frac{41}{3}

Step 4. Calculate 12A12A:
12A = 12×41312 \times \frac{41}{3} = 164

The Correct Answer is: 12A=16412A = 164