Solveeit Logo

Question

Mathematics Question on Area between Two Curves

Let the area of the region enclosed by the curves y=3xy = 3x, 2y=273x2y = 27 - 3x, and y=3xxxy = 3x - x\sqrt{x} be AA. Then 10A10A is equal to:

A

184

B

154

C

172

D

162

Answer

162

Explanation

Solution

The curves are y=3xy = 3x, 2y=273x2y = 27 - 3x, and y=3xxxy = 3x - x\sqrt{x}. The area AA is divided as:

A=03(3x(3xxx))dx+39(273x2(3xxx))dx.A = \int_0^3 \left(3x - (3x - x\sqrt{x})\right) dx + \int_3^9 \left(\frac{27 - 3x}{2} - (3x - x\sqrt{x})\right) dx.

First Integral:

03(3x3x+xx)dx=03xxdx=03x3/2dx=[2x5/25]03.\int_0^3 \left(3x - 3x + x\sqrt{x}\right) dx = \int_0^3 x\sqrt{x} dx = \int_0^3 x^{3/2} dx = \left[\frac{2x^{5/2}}{5}\right]_0^3. =25(35/205/2)=25×35/2.= \frac{2}{5} \left(3^{5/2} - 0^{5/2}\right) = \frac{2}{5} \times 3^{5/2}.

Second Integral:

39(2723x23x+xx)dx=39(2729x2+xx)dx.\int_3^9 \left(\frac{27}{2} - \frac{3x}{2} - 3x + x\sqrt{x}\right) dx = \int_3^9 \left(\frac{27}{2} - \frac{9x}{2} + x\sqrt{x}\right) dx.

Evaluate term by term:

39272dx=272×(93)=81.\int_3^9 \frac{27}{2} dx = \frac{27}{2} \times (9 - 3) = 81. 399x2dx=9239xdx=92×[x22]39=92×8192=92×36=162.\int_3^9 \frac{9x}{2} dx = \frac{9}{2} \int_3^9 x dx = \frac{9}{2} \times \left[\frac{x^2}{2}\right]_3^9 = \frac{9}{2} \times \frac{81 - 9}{2} = \frac{9}{2} \times 36 = 162. 39xxdx=39x3/2dx=[2x5/25]39=25(95/235/2).\int_3^9 x\sqrt{x} dx = \int_3^9 x^{3/2} dx = \left[\frac{2x^{5/2}}{5}\right]_3^9 = \frac{2}{5} \left(9^{5/2} - 3^{5/2}\right).

Combine results:

A=25×35/2+81162+25×(95/235/2).A = \frac{2}{5} \times 3^{5/2} + 81 - 162 + \frac{2}{5} \times \left(9^{5/2} - 3^{5/2}\right). A=25×95/225×35/2+81162.A = \frac{2}{5} \times 9^{5/2} - \frac{2}{5} \times 3^{5/2} + 81 - 162. A=25×95/2+81162.A = \frac{2}{5} \times 9^{5/2} + 81 - 162. A=486581=815.A = \frac{486}{5} - 81 = \frac{81}{5}.

Final result:

10A=162.10A = 162.