Question
Mathematics Question on Area between Two Curves
Let the area of the region enclosed by the curves y=3x, 2y=27−3x, and y=3x−xx be A. Then 10A is equal to:
A
184
B
154
C
172
D
162
Answer
162
Explanation
Solution
The curves are y=3x, 2y=27−3x, and y=3x−xx. The area A is divided as:
A=∫03(3x−(3x−xx))dx+∫39(227−3x−(3x−xx))dx.
First Integral:
∫03(3x−3x+xx)dx=∫03xxdx=∫03x3/2dx=[52x5/2]03. =52(35/2−05/2)=52×35/2.
Second Integral:
∫39(227−23x−3x+xx)dx=∫39(227−29x+xx)dx.
Evaluate term by term:
∫39227dx=227×(9−3)=81. ∫3929xdx=29∫39xdx=29×[2x2]39=29×281−9=29×36=162. ∫39xxdx=∫39x3/2dx=[52x5/2]39=52(95/2−35/2).
Combine results:
A=52×35/2+81−162+52×(95/2−35/2). A=52×95/2−52×35/2+81−162. A=52×95/2+81−162. A=5486−81=581.
Final result:
10A=162.