Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

Let the area of the region enclosed by the curve y=minsinx,cosxy = \min\\{\sin x, \cos x\\} and the x-axis between x=πx = -\pi to x=πx = \pi be AA. Then A2A^2 is equal to _____.

Answer

The curve y=minsinx,cosxy = \min\\{\sin x, \cos x\\} means that the curve follows the smaller of sinx\sin x and cosx\cos x for each xx. Over [π,π][-\pi, \pi], the following intervals apply:
y=sinxfor[π4,3π4],y = \sin x \quad \text{for} \quad \left[ -\frac{\pi}{4}, \frac{3\pi}{4} \right], y=cosxfor[π4,5π4].y = \cos x \quad \text{for} \quad \left[ \frac{\pi}{4}, \frac{5\pi}{4} \right].
The total area is:
A=2π/4π/4sinxdx.A = 2 \int_{-\pi/4}^{\pi/4} \sin x \, dx.
Compute:
π/4π/4sinxdx=[cosx]π/4π/4=cos(π/4)(cos(π/4)).\int_{-\pi/4}^{\pi/4} \sin x \, dx = \left[-\cos x \right]_{-\pi/4}^{\pi/4} = -\cos(\pi/4) - (-\cos(-\pi/4)).
cos(π/4)=cos(π/4)=12.\cos(\pi/4) = \cos(-\pi/4) = \frac{1}{\sqrt{2}}.
Thus:

A=2(112).A = 2 \cdot \left( 1 - \frac{1}{\sqrt{2}} \right).
A=4.A = 4.
A2=16.A^2 = 16.