Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let θθ be the angle between the vectors a\vec a and b\vec b, where a=4|\vec a|=4, b=3|\vec b|=3 and θ(π4, π3)θ(\frac \pi 4,\ \frac \pi3) . Then (ab)×(a+b)2+4(a.b)2|(\vec a−\vec b)×(\vec a+\vec b)|^2+4(\vec a.\vec b)^2 is equal to ______.

Answer

(ab)×(a+b)2+4(a.b)2|(\vec a−\vec b)×(\vec a+\vec b)|^2+4(\vec a.\vec b)^2
=a×a+a×bb×ab×b2+4(ab)2= |\vec a×\vec a+\vec a×\vec b−\vec b×\vec a−\vec b×\vec b|^2+4(\vec a⋅\vec b)^2
=2(a×b)2+4(ab)2= |2(\vec a×\vec b)|^2+4(\vec a⋅\vec b)^2
=4(a×b)2+(ab)2= 4(\vec a×\vec b)^2+(\vec a⋅\vec b)^2
=4a2b2= 4|\vec a|^2|\vec b|^2
=4x16x9= 4x16x9
=576= 576

So, the correct answer is 576576.