Solveeit Logo

Question

Question: Let \({\text{S}} = \\{ x \in ( - \pi ,\pi ):x \ne 0, \pm \dfrac{\pi }{2}\\} \). The sum of all disti...

Let S=x(π,π):x0,±π2{\text{S}} = \\{ x \in ( - \pi ,\pi ):x \ne 0, \pm \dfrac{\pi }{2}\\} . The sum of all distinct solutions of the equation 3secx+cosecx+2(tanxcotx)=0\sqrt 3 \sec x + \cos ecx + 2(\tan x - \cot x) = 0 in the set S{\text{S}} is equal to
(a) 7π9 (b) 2π9 (c) 0 (d) 5π9  {\text{(a) }} - \dfrac{{7\pi }}{9} \\\ {\text{(b) }} - \dfrac{{2\pi }}{9} \\\ {\text{(c) }}0 \\\ {\text{(d) }}\dfrac{{5\pi }}{9} \\\

Explanation

Solution

For these problems, first convert the equation in the simple form and solve it. Find all the values for the variable and add them to get the final solution.

Complete step-by-step answer:
Firstly, write the expressions given in the question,
3secx+cosecx+2(tanxcotx)=0\sqrt 3 \sec x + \cos ecx + 2(\tan x - \cot x) = 0
Now, arrange the expression in the following way by taking the tanx and cotx\tan x {\text{ and }} \cot x to right side of equal sign,
3secx+cosecx+2(tanxcotx)=0 3secx+cosecx=2(cotxtanx)  \Rightarrow \sqrt 3 \sec x + \cos ecx + 2(\tan x - \cot x) = 0 \\\ \Rightarrow \sqrt 3 \sec x + \cos ecx = 2(\cot x - \tan x) \\\
Now, divide the equation by 2,
32secx+12cosecx=cotxtanx\Rightarrow \dfrac{{\sqrt 3 }}{2}\sec x + \dfrac{1}{2}\cos ecx = \cot x - \tan x
Now, convert the expression in sinx and cosx\sin x{\text{ and }}\cos x terms, take the LCM and use the formula for cos2A and cos(AB)\cos 2A{\text{ and }}\cos (A - B) in the following way,

321cosx+121sinx=cosxsinxsinxcosx 32sinx+12cosx=cos2xsin2x sinπ3sinx+cosπ3cosx=cos2x cos(xπ3)=cos2x  \Rightarrow \dfrac{{\sqrt 3 }}{2}\dfrac{1}{{\cos x}} + \dfrac{1}{2}\dfrac{1}{{\sin x}} = \dfrac{{\cos x}}{{\sin x}} - \dfrac{{\sin x}}{{\cos x}} \\\ \Rightarrow \dfrac{{\sqrt 3 }}{2}\sin x + \dfrac{1}{2}\cos x = {\cos ^2}x - {\sin ^2}x \\\ \Rightarrow \sin \dfrac{\pi }{3}\sin x + \cos \dfrac{\pi }{3}\cos x = \cos 2x \\\ \Rightarrow \cos (x - \dfrac{\pi }{3}) = \cos 2x \\\

Since we know that if cosθ=cosα\cos \theta = \cos \alpha thenθ=2nπ±α\theta = 2n\pi \pm \alpha , hence
2x=2nπ±(xπ3)\Rightarrow 2x = 2n\pi \pm (x - \dfrac{\pi }{3})
Case 1: Consider the positive sign for the above expression then,
2x=2nπ+xπ3 x=2nππ3 If n = 0, we get x=π3 If n = 1, we get x=2ππ3=5π3 If n = - 1, we get x=2ππ3=7π3  \Rightarrow 2x = 2n\pi + x - \dfrac{\pi }{3} \\\ \Rightarrow x = 2n\pi - \dfrac{\pi }{3} \\\ {\text{If n = 0, we get }}x = - \dfrac{\pi }{3} \\\ {\text{If n = 1, we get }}x = 2\pi - \dfrac{\pi }{3} = \dfrac{{5\pi }}{3} \\\ {\text{If n = - 1, we get }}x = - 2\pi - \dfrac{\pi }{3} = - \dfrac{{7\pi }}{3} \\\
If you see that when either n=1 or n=-1, the values of xx are not in the range which is given asx(π,π)x \in ( - \pi ,\pi ). Hence both these values for xx will not be considered. Only one value for xx , i.e., x=π3x = - \dfrac{\pi }{3} will be considered.
Case 1: Consider the negative sign for the above expression then,

2x=2nπx+π3 3x=2nπ+π3 If n = 0, we get 3x=π3 x=π9 If n = 1, we get  3x=2π+π3 x=2π3+π9=7π9 If n = - 1, we get  3x=2π+π3 x=2π3+π9=5π9 If n = - 2, we get  3x=4π+π3 x=4π3+π9=11π9  \Rightarrow 2x = 2n\pi - x + \dfrac{\pi }{3} \\\ \Rightarrow 3x = 2n\pi + \dfrac{\pi }{3} \\\ {\text{If n = 0, we get}} \\\ {\text{3}}x = \dfrac{\pi }{3} \\\ x = \dfrac{\pi }{9} \\\ {\text{If n = 1, we get }} \\\ {\text{3}}x = 2\pi + \dfrac{\pi }{3} \\\ x = \dfrac{{2\pi }}{3} + \dfrac{\pi }{9} = \dfrac{{7\pi }}{9} \\\ {\text{If n = - 1, we get }} \\\ {\text{3}}x = - 2\pi + \dfrac{\pi }{3} \\\ x = - \dfrac{{2\pi }}{3} + \dfrac{\pi }{9} = - \dfrac{{5\pi }}{9} \\\ {\text{If n = - 2, we get }} \\\ {\text{3}}x = - 4\pi + \dfrac{\pi }{3} \\\ x = - \dfrac{{4\pi }}{3} + \dfrac{\pi }{9} = - \dfrac{{11\pi }}{9} \\\

Now, if you see that when n=-2, the value of xx is not in the range which is given as x(π,π)x \in ( - \pi ,\pi ). Hence both this value for xx will not be considered. Only 3 values for xx , i.e., x=π9,7π9 and 5π9x = \dfrac{\pi }{9},\dfrac{{7\pi }}{9}{\text{ and }} - \dfrac{{5\pi }}{9}will be considered.
Therefore, sum of all the distinct solutions of xx, will be,

x=π3+π9+7π95π9 x=3π+π+7π5π9 x=8π+8π9=0  x = - \dfrac{\pi }{3} + \dfrac{\pi }{9} + \dfrac{{7\pi }}{9} - \dfrac{{5\pi }}{9} \\\ x = \dfrac{{ - 3\pi + \pi + 7\pi - 5\pi }}{9} \\\ x = \dfrac{{ - 8\pi + 8\pi }}{9} = 0 \\\

Hence, the answer for the question is (c).

Note: For solving these questions, always remember the range for the variable because without checking from time to time, we will lose our time to reach the solution. Also, simplifying them will help to solve these questions.