Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let P(x,y,z)\text{P}(x, y, z) be a point in the first octant, whose projection in the xy-plane is the point Q\text{Q}. Let OP=γ\text{OP} = \gamma; the angle between OQ\text{OQ} and the positive x-axis be θ\theta; and the angle between OP\text{OP} and the positive z-axis be ϕ\phi, where O\text{O} is the origin. Then the distance of P\text{P} from the x-axis is:

A

γ1sin2ϕcos2θ\gamma \sqrt{1 - \sin^2 \phi \cos^2 \theta}

B

γ1+cos2θsin2ϕ\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}

C

γ1sin2θcos2ϕ\gamma \sqrt{1 - \sin^2 \theta \cos^2 \phi}

D

γ1+cos2ϕsin2θ\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}

Answer

γ1sin2ϕcos2θ\gamma \sqrt{1 - \sin^2 \phi \cos^2 \theta}

Explanation

Solution

P(x,y,z),Q(x,y,0);x2+y2+z2=γ2P(x, y, z), Q(x, y, 0); \quad x^2 + y^2 + z^2 = \gamma^2

OQ=xi+yjOQ = xi + yj

cosθ=xx2+y2\cos \theta = \frac{x}{\sqrt{x^2 + y^2}}

cosϕ=xx2+y2+z2\cos \phi = \frac{x}{\sqrt{x^2 + y^2 + z^2}}

    sin2ϕ=x2+y2x2+y2+z2\implies \sin^2 \phi = \frac{x^2 + y^2}{x^2 + y^2 + z^2}

Distance of P from x-axis=y2+z2\textbf{Distance of } P \textbf{ from x-axis} = \sqrt{y^2 + z^2}

    γ2x2    γ1x2γ2\implies \sqrt{\gamma^2 - x^2} \implies \gamma \sqrt{1 - \frac{x^2}{\gamma^2}}

=γ1cos2θsin2ϕ= \gamma \sqrt{1 - \cos^2 \theta \sin^2 \phi}