Solveeit Logo

Question

Question: : Let \( \tan x = m\tan y \) , then \( \sin \left( {x + y} \right) \) equal: A. \( \left( {\dfrac{...

: Let tanx=mtany\tan x = m\tan y , then sin(x+y)\sin \left( {x + y} \right) equal:
A. (m+1m1)sin(xy)\left( {\dfrac{{m + 1}}{{m - 1}}} \right)\sin \left( {x - y} \right)
B. (m1m+1)sin(xy)\left( {\dfrac{{m - 1}}{{m + 1}}} \right)\sin \left( {x - y} \right)
C. 1+m2sin(xy)\sqrt {1 + {m^2}} \sin \left( {x - y} \right)
D. 2m+12m1sin(xy)\dfrac{{2m + 1}}{{2m - 1}}\sin \left( {x - y} \right)

Explanation

Solution

Hint : Simplify the term sin(x+y)\sin \left( {x + y} \right) using the formula for sum of angles for sine function and then check the value of sin(xy)\sin \left( {x - y} \right) and compare them both and get the value of sin(x+y)\sin \left( {x + y} \right) in terms of sin(xy)\sin \left( {x - y} \right) .

Complete step-by-step answer :
As per statement it is given that tanx=mtany\tan x = m\tan y .
Use the trigonometric formula for the sum of angles for the trigonometric function sine given as sin(x+y)=sinxcosy+cosxsiny\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y .
Simplify the term sin(x+y)\sin \left( {x + y} \right) with the help of the trigonometric formula mentioned above.
sin(x+y)=sinxcosy+cosxsiny\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y
Divide the right hand side of the equation by cosxcosy\cos x\cos y and also multiply right hand side by the same term.
sin(x+y)=cosxcosy(sinxcosycosxcosy+cosxsinycosxcosy) =cosxcosy(tanx+tany)   \sin \left( {x + y} \right) = \cos x\cos y\left( {\dfrac{{\sin x\cos y}}{{\cos x\cos y}} + \dfrac{{\cos x\sin y}}{{\cos x\cos y}}} \right) \\\ = \cos x\cos y\left( {\tan x + \tan y} \right) \;
As given tanx=mtany\tan x = m\tan y substitute mtanym\tan y for the value of tanx\tan x in the above equation.
sin(x+y)=cosxcosy(tanx+tany) =cosxcosy(mtany+tany) =cosxcosytany(m+1) =cosxsiny(m+1)      (1)   \sin \left( {x + y} \right) = \cos x\cos y\left( {\tan x + \tan y} \right) \\\ = \cos x\cos y\left( {m\tan y + \tan y} \right) \\\ = \cos x\cos y\tan y\left( {m + 1} \right) \\\ = \cos x\sin y\left( {m + 1} \right)\;\;\; \ldots \left( 1 \right) \;
Now simplify the term sin(xy)\sin \left( {x - y} \right) by the trigonometric formula.
sin(xy)=sinxcosycosxsiny\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y
Divide the right hand side of the equation by cosxcosy\cos x\cos y and also multiply right hand side by the same term.
sin(xy)=cosxcosy(sinxcosycosxcosycosxsinycosxcosy) =cosxcosy(tanxtany) =cosxcosy(mtanytany) =cosxsiny(m1)   \sin \left( {x - y} \right) = \cos x\cos y\left( {\dfrac{{\sin x\cos y}}{{\cos x\cos y}} - \dfrac{{\cos x\sin y}}{{\cos x\cos y}}} \right) \\\ = \cos x\cos y\left( {\tan x - \tan y} \right) \\\ = \cos x\cos y\left( {m\tan y - \tan y} \right) \\\ = \cos x\sin y\left( {m - 1} \right) \;
As sin(xy)=cosxsiny(m1)\sin \left( {x - y} \right) = \cos x\sin y\left( {m - 1} \right) . So, we can say that cosxsiny=sin(xy)m1\cos x\sin y = \dfrac{{\sin \left( {x - y} \right)}}{{m - 1}} .
Substitute the value of cosxsiny\cos x\sin y in the equation (1)\left( 1 \right) .
sin(x+y)=cosxsiny(m+1) =sin(xy)(m1)(m+1) =(m+1m1)sin(xy)   \sin \left( {x + y} \right) = \cos x\sin y\left( {m + 1} \right) \\\ = \dfrac{{\sin \left( {x - y} \right)}}{{\left( {m - 1} \right)}}\left( {m + 1} \right) \\\ = \left( {\dfrac{{m + 1}}{{m - 1}}} \right)\sin \left( {x - y} \right) \;
So, the value of sin(x+y)\sin \left( {x + y} \right) is equal to (m+1m1)sin(xy)\left( {\dfrac{{m + 1}}{{m - 1}}} \right)\sin \left( {x - y} \right) .
So, the correct answer is “Option A”.

Note : Use the trigonometric formulas for the sum and difference of the angles for the trigonometric function sine as sin(x+y)=sinxcosy+cosxsiny\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y and sin(xy)=sinxcosycosxsiny\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y . Compare both the values as there is a common factor in both the simplifications.