Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Let tanα=aa+1\tan \,\alpha = \frac{a}{a+1} and tanβ=12a+1\tan \,\beta = \frac{1}{2a + 1} then α+β\alpha + \beta is

A

π4\frac{\pi}{4}

B

π3\frac{\pi}{3}

C

π2\frac{\pi}{2}

D

π\pi

Answer

π4\frac{\pi}{4}

Explanation

Solution

Given, tanα=aa+1 \tan \alpha =\frac{a}{a+1} and tanβ=12a+1\tan \beta=\frac{1}{2 a+1}
tan(α+β)=tanα+tanβ1tanαtanβ\therefore \tan (\alpha+\beta) =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}
=aa+1+12a+11a(a+1)×1(2a+1)=\frac{\frac{a}{a+1}+\frac{1}{2 a+1}}{1-\frac{a}{(a+1)} \times \frac{1}{(2 a+1)}}
=a(2a+1)+(a+1)(a+1)(2a+1)a=\frac{a(2 a+1)+(a+1)}{(a+1)(2 a+1)-a}
=2a2+2a+12a2+2a+1=1=\frac{2 a^{2}+2 a+1}{2 a^{2}+2 a+1}=1
α+β=π4\Rightarrow \alpha+\beta=\frac{\pi}{4}