Question
Mathematics Question on Trigonometric Functions
Let tanα=a+1a and tanβ=2a+11 then α+β is
A
4π
B
3π
C
2π
D
π
Answer
4π
Explanation
Solution
Given, tanα=a+1a and tanβ=2a+11
∴tan(α+β)=1−tanαtanβtanα+tanβ
=1−(a+1)a×(2a+1)1a+1a+2a+11
=(a+1)(2a+1)−aa(2a+1)+(a+1)
=2a2+2a+12a2+2a+1=1
⇒α+β=4π