Question
Question: Let (tan a) x + (sin a) y = a and (a cosec a)x + (cosa) y = 1 be two straight lines, a being the par...
Let (tan a) x + (sin a) y = a and (a cosec a)x + (cosa) y = 1 be two straight lines, a being the parameter. Let P be the point of intersection of the lines. In the limiting position when a ® 0 the coordinate of P are
A
(2, 1)
B
(2, –1)
C
(–2, 1)
D
(–2, – 1)
Answer
(2, –1)
Explanation
Solution
Solve the equation for values of x and y
x = sinα−ααcosα−sinα y = sinαα−xtanα
where x = limα→0 sinα−ααcosα−sinα (0/0)
L.Hospital
x = cosα−1−αsinα+cosα−cosα
x = limα→0– cosα−1αsinα (0/0)
x = limα→0 2sin2α/2α(2sin2αcos2α)
x = tan2αα = limα→0 tan(2α)(2α)×2
= + 2
and y = limα→0 limα→0 sinαtanα × x
y Ž limα→0 limα→0
{limα→0x=+2}
y = 1 – 2 = – 1 Hence (2, – 1)