Question
Question: Let $\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left( \frac{2x}{1-x^2} \right)$, where $|x| < \frac{1}{\...
Let tan−1y=tan−1x+tan−1(1−x22x), where ∣x∣<31. Then a value of y is:

A
1+3x23x−x3
B
1+3x23x+x3
C
1−3x23x−x3
D
1−3x23x+x3
Answer
1−3x23x−x3
Explanation
Solution
Let x=tanθ. Since ∣x∣<31, we have −31<x<31. This implies −6π<θ<6π.
Now consider the term tan−1(1−x22x). Substitute x=tanθ:
tan−1(1−tan2θ2tanθ)=tan−1(tan(2θ))=2θ.
Substitute this back into the original equation:
tan−1y=tan−1x+2θ.
Since x=tanθ, tan−1x=θ.
tan−1y=θ+2θ=3θ.
We need to find y. Taking the tangent of both sides gives y=tan(3θ). We use the triple angle formula for tangent:
tan(3θ)=1−3tan2θ3tanθ−tan3θ.
Substitute tanθ=x into this formula:
y=1−3x23x−x3.