Solveeit Logo

Question

Question: Let $\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left( \frac{2x}{1-x^2} \right)$, where $|x| < \frac{1}{\...

Let tan1y=tan1x+tan1(2x1x2)\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left( \frac{2x}{1-x^2} \right), where x<13|x| < \frac{1}{\sqrt{3}}. Then a value of y is:

A

3xx31+3x2\frac{3x - x^3}{1 + 3x^2}

B

3x+x31+3x2\frac{3x + x^3}{1 + 3x^2}

C

3xx313x2\frac{3x - x^3}{1 - 3x^2}

D

3x+x313x2\frac{3x + x^3}{1 - 3x^2}

Answer

3xx313x2\frac{3x - x^3}{1 - 3x^2}

Explanation

Solution

Let x=tanθx = \tan \theta. Since x<13|x| < \frac{1}{\sqrt{3}}, we have 13<x<13-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}. This implies π6<θ<π6-\frac{\pi}{6} < \theta < \frac{\pi}{6}.

Now consider the term tan1(2x1x2)\tan^{-1} \left( \frac{2x}{1-x^2} \right). Substitute x=tanθx = \tan \theta:

tan1(2tanθ1tan2θ)=tan1(tan(2θ))=2θ\tan^{-1} \left( \frac{2 \tan \theta}{1 - \tan^2 \theta} \right) = \tan^{-1}(\tan(2\theta)) = 2\theta.

Substitute this back into the original equation:

tan1y=tan1x+2θ\tan^{-1} y = \tan^{-1} x + 2\theta.

Since x=tanθx = \tan \theta, tan1x=θ\tan^{-1} x = \theta.

tan1y=θ+2θ=3θ\tan^{-1} y = \theta + 2\theta = 3\theta.

We need to find yy. Taking the tangent of both sides gives y=tan(3θ)y = \tan(3\theta). We use the triple angle formula for tangent:

tan(3θ)=3tanθtan3θ13tan2θ\tan(3\theta) = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}.

Substitute tanθ=x\tan \theta = x into this formula:

y=3xx313x2y = \frac{3x - x^3}{1 - 3x^2}.