Solveeit Logo

Question

Question: Let $\tan^{-1} y = \tan^{-1} x + \tan^{-1} (\frac{2x}{1-x^2})$, where $|x| < \frac{1}{\sqrt{3}}$. Th...

Let tan1y=tan1x+tan1(2x1x2)\tan^{-1} y = \tan^{-1} x + \tan^{-1} (\frac{2x}{1-x^2}), where x<13|x| < \frac{1}{\sqrt{3}}. Then a value of y is:

A

3xx31+3x2\frac{3x - x^3}{1+ 3x^2}

B

3x+x31+3x2\frac{3x + x^3}{1+ 3x^2}

C

3xx313x2\frac{3x - x^3}{1- 3x^2}

D

3x+x313x2\frac{3x + x^3}{1- 3x^2}

Answer

3xx313x2\frac{3x - x^3}{1- 3x^2}

Explanation

Solution

We are given the equation tan1y=tan1x+tan1(2x1x2)\tan^{-1} y = \tan^{-1} x + \tan^{-1} (\frac{2x}{1-x^2}) and the condition x<13|x| < \frac{1}{\sqrt{3}}.

We can simplify the equation using the identity 2tan1x=tan1(2x1x2)2 \tan^{-1} x = \tan^{-1} (\frac{2x}{1-x^2}), which is valid for x<1|x| < 1. Since x<13|x| < \frac{1}{\sqrt{3}} implies x<1|x| < 1, we can substitute:

tan1y=tan1x+2tan1x\tan^{-1} y = \tan^{-1} x + 2 \tan^{-1} x tan1y=3tan1x\tan^{-1} y = 3 \tan^{-1} x

Now, we use the identity 3tan1x=tan1(3xx313x2)3 \tan^{-1} x = \tan^{-1} (\frac{3x - x^3}{1 - 3x^2}), which is valid for x<13|x| < \frac{1}{\sqrt{3}}. Since the given condition satisfies this, we can substitute:

tan1y=tan1(3xx313x2)\tan^{-1} y = \tan^{-1} (\frac{3x - x^3}{1 - 3x^2})

Therefore, y=3xx313x2y = \frac{3x - x^3}{1 - 3x^2}.