Question
Question: Let $\tan^{-1} y = \tan^{-1} x + \tan^{-1} (\frac{2x}{1-x^2})$, where $|x| < \frac{1}{\sqrt{3}}$. Th...
Let tan−1y=tan−1x+tan−1(1−x22x), where ∣x∣<31. Then a value of y is:

A
1+3x23x−x3
B
1+3x23x+x3
C
1−3x23x−x3
D
1−3x23x+x3
Answer
1−3x23x−x3
Explanation
Solution
We are given the equation tan−1y=tan−1x+tan−1(1−x22x) and the condition ∣x∣<31.
We can simplify the equation using the identity 2tan−1x=tan−1(1−x22x), which is valid for ∣x∣<1. Since ∣x∣<31 implies ∣x∣<1, we can substitute:
tan−1y=tan−1x+2tan−1x tan−1y=3tan−1x
Now, we use the identity 3tan−1x=tan−1(1−3x23x−x3), which is valid for ∣x∣<31. Since the given condition satisfies this, we can substitute:
tan−1y=tan−1(1−3x23x−x3)
Therefore, y=1−3x23x−x3.