Solveeit Logo

Question

Mathematics Question on Sequence and series

Let trt_r denotes the rthr^{th} term of an A.PA.P. Also, suppose that tm=1nt_{m} = \frac{1}{n} and tn=1m,(mn)t_{n}= \frac{1}{m}, \left(m\ne n\right), for some positive integers mm and nn, then which of the following is necessarily a root of the equation (l+m2n)x2+(m+n2l)x+(n+l2m)=0(l+m- 2n)x^2 + (m + n- 2l)x +(n + l- 2m) = 0?

A

tnt_n

B

tmt_m

C

tm+nt_{m+n}

D

tmnt_{mn}

Answer

tmnt_{mn}

Explanation

Solution

tm=a+(m1)d=1n...(i)t_{m} =a + \left(m-1\right)d = \frac{1}{n} \quad...\left(i\right) tn=a+(n1)d=1m...(ii) t_{n} = a + \left(n-1\right)d= \frac{1}{m}\quad...\left(ii\right) Subtracting (ii)\left(ii\right) from (i)\left(i\right), we get (mn)d=1n1m\left(m-n\right)d = \frac{1}{n} - \frac{1}{m} (mn)d=mnmn\Rightarrow \left(m-n\right)d =\frac{ m-n}{mn} d=1mn(mn)...(iii) \Rightarrow d = \frac{1}{mn} \left(\because m\ne n\right)\quad...\left(iii\right) tmn=a+(mn1)d=a+(mn1)×1mnt_{mn} = a +\left(mn -1\right)d = a + \left(mn-1\right) \times \frac{1}{mn} =a1mn+1...(iv)= a - \frac{1}{mn} +1\quad ...\left(iv\right) From (i)\left(i\right) and (ii)\left(ii\right) a+(m1)1mn=1n a +\left(m-1\right)\cdot\frac{1}{mn} = \frac{1}{n} a+1n1mn=1n\Rightarrow a+ \frac{1}{n} -\frac{1}{mn} = \frac{1}{n} a=1mn\Rightarrow a= \frac{1}{mn} tmn=1 \Rightarrow t_{mn} = 1