Solveeit Logo

Question

Question: Let \({T_r}\) be the \({r^{{\text{th}}}}\) term of an A.P., for \(r = 1,2,3,....\). If for some posi...

Let Tr{T_r} be the rth{r^{{\text{th}}}} term of an A.P., for r=1,2,3,....r = 1,2,3,..... If for some positive integers m,nm,n we have Tm=1n{T_m} = \dfrac{1}{n} and Tn=1m{T_n} = \dfrac{1}{m} then Tmn{T_{mn}} equals?
(A) 1mn\dfrac{1}{{mn}}
(B) 1m+1n\dfrac{1}{m} + \dfrac{1}{n}
(C) 1
(D) 0

Explanation

Solution

Use the formula for general term of an A.P. i.e. Tn=a+(n1)d{T_n} = a + \left( {n - 1} \right)d to frame the equations for Tm{T_m} and Tn{T_n}. Find the values of aa and dd solving these two equations. Put these values in the expression of Tmn{T_{mn}} to get the answer.

Complete step by step answer:
According to the question, we have been given an arithmetic progression having the general term Tr{T_r} for r=1,2,3,....r = 1,2,3,.....
We know that the nth{n^{{\text{th}}}} term of an arithmetic progression is written as Tn=a+(n1)d{T_n} = a + \left( {n - 1} \right)d, where aa is its first term and dd is its common difference. Based on this, we have:
Tr=a+(r1)d .....(1)\Rightarrow {T_r} = a + \left( {r - 1} \right)d{\text{ }}.....{\text{(1)}}
Further, it is given that the mth{m^{{\text{th}}}} term is 1n\dfrac{1}{n} i.e. Tm=1n{T_m} = \dfrac{1}{n}. Using formula for general term, we have:
Tm=a+(m1)d=1n a+(m1)d=1n .....(2)  \Rightarrow {T_m} = a + \left( {m - 1} \right)d = \dfrac{1}{n} \\\ \Rightarrow a + \left( {m - 1} \right)d = \dfrac{1}{n}{\text{ }}.....{\text{(2)}} \\\
Also it is given that the nth{n^{{\text{th}}}} term is 1m\dfrac{1}{m} i.e. Tn=1m{T_n} = \dfrac{1}{m}. Again using formula for general term, we have:
Tn=a+(n1)d=1m a+(n1)d=1m .....(3)  \Rightarrow {T_n} = a + \left( {n - 1} \right)d = \dfrac{1}{m} \\\ \Rightarrow a + \left( {n - 1} \right)d = \dfrac{1}{m}{\text{ }}.....{\text{(3)}} \\\
Subtracting equation (3) from equation (2), we’ll get:
a+(m1)d[a+(n1)d]=1n1m a+mddand+d=mnmn (mn)d=mnmn  \Rightarrow a + \left( {m - 1} \right)d - \left[ {a + \left( {n - 1} \right)d} \right] = \dfrac{1}{n} - \dfrac{1}{m} \\\ \Rightarrow a + md - d - a - nd + d = \dfrac{{m - n}}{{mn}} \\\ \Rightarrow \left( {m - n} \right)d = \dfrac{{m - n}}{{mn}} \\\
From both sides, (mn)\left( {m - n} \right) will be cancelled, we’ll get:
d=1mn\Rightarrow d = \dfrac{1}{{mn}}
Putting the value d=1mnd = \dfrac{1}{{mn}} in equation (2), we’ll get:
a+(m1)1mn=1n a+mmn1mn=1n a+1n1mn=1n a=1mn  \Rightarrow a + \left( {m - 1} \right)\dfrac{1}{{mn}} = \dfrac{1}{n} \\\ \Rightarrow a + \dfrac{m}{{mn}} - \dfrac{1}{{mn}} = \dfrac{1}{n} \\\ \Rightarrow a + \dfrac{1}{n} - \dfrac{1}{{mn}} = \dfrac{1}{n} \\\ \Rightarrow a = \dfrac{1}{{mn}} \\\
Thus we have a=1mna = \dfrac{1}{{mn}} and d=1mnd = \dfrac{1}{{mn}}.
Now we have to determine Tmn{T_{mn}}. Putting r=mnr = mn in equation, we have:
Tmn=a+(mn1)d\Rightarrow {T_{mn}} = a + \left( {mn - 1} \right)d
Putting a=1mna = \dfrac{1}{{mn}} and d=1mnd = \dfrac{1}{{mn}}, we’ll get:
Tmn=1mn+(mn1)1mn Tmn=1mn+mnmn1mn Tmn=1  \Rightarrow {T_{mn}} = \dfrac{1}{{mn}} + \left( {mn - 1} \right)\dfrac{1}{{mn}} \\\ \Rightarrow {T_{mn}} = \dfrac{1}{{mn}} + \dfrac{{mn}}{{mn}} - \dfrac{1}{{mn}} \\\ \Rightarrow {T_{mn}} = 1 \\\
Thus the value of Tmn{T_{mn}} is 1.

So, the correct answer is Option C.

Note: Tn=a+(n1)d{T_n} = a + \left( {n - 1} \right)d is the formula for the general term of an arithmetic progression. If an arithmetic progression is having nn terms with aa as its first term and dd is the common difference then the sum of its terms can be calculated using the formula:
Sn=n2[2a+(n1)d]\Rightarrow {S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]