Solveeit Logo

Question

Question: Let \[{T_n}\] denote the number of triangles which can be formed by using the vertices of a regular ...

Let Tn{T_n} denote the number of triangles which can be formed by using the vertices of a regular polygon of n sides. If Tn+1Tn=21{T_{n + 1}} - {T_n} = 21 , then nn equals
(1)\left( 1 \right) 55
(2)\left( 2 \right) 77
(3)\left( 3 \right) 66
(4)\left( 4 \right) 44

Explanation

Solution

We have to find the value of nn . We solve this using the concept of permutation and combination . We should have the knowledge of formula combinations of terms and how to expand the factorial terms . We will simplify the terms of combination in the formula to find the value of the number of sides (nn) .

Complete step-by-step solution:
The number of terms of a combination is always one more than the combination of terms which we have to expand . If we have to find the fifth term of the combination then the value for the combination would be found for four .
Given :
Tn+1Tn=21{T_{n + 1}} - {T_n} = 21
As , nC3{}^n{C_3} gives the number of triangles which can be formed using the sides of the vertices of a regular polygon of nn sides .
Tn=nC3{T_n} = {}^n{C_3}
Putting the expression of number of triangles in the given equation , we get
n+1C3nC3=21{}^{n + 1}{C_3} - {}^n{C_3} = 21
We have to find the value of nn .
We know that , formula of combination is given as :
rCn=r!n!×(rn)!{}^r{C_n} = \dfrac{{r!}}{{n! \times \left( {r - n} \right)!}}
Using the formula of combination we can write the expression as ,
(n+1)!3!×(n+13)!n!3!×(n3)!=21\dfrac{{\left( {n + 1} \right)!}}{{3! \times \left( {n + 1 - 3} \right)!}} - \dfrac{{n!}}{{3! \times \left( {n - 3} \right)!}} = 21
(n+1)!3!×(n2)!n!3!×(n3)!=21\dfrac{{\left( {n + 1} \right)!}}{{3! \times \left( {n - 2} \right)!}} - \dfrac{{n!}}{{3! \times \left( {n - 3} \right)!}} = 21
On expanding the factorial , we get the expression as :
(n+1)(n)(n1)(n2)!3×2×1×(n2)!n(n1)(n2)(n3)!3×2×1×(n3)!=21\dfrac{{\left( {n + 1} \right)\left( n \right)\left( {n - 1} \right)\left( {n - 2} \right)!}}{{3 \times 2 \times 1 \times \left( {n - 2} \right)!}} - \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{3 \times 2 \times 1 \times \left( {n - 3} \right)!}} = 21
Cancelling the terms , we can write the expression as :
(n+1)(n)(n1)3×2×1n(n1)(n2)3×2×1=21\dfrac{{\left( {n + 1} \right)\left( n \right)\left( {n - 1} \right)}}{{3 \times 2 \times 1}} - \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3 \times 2 \times 1}} = 21
Taking (n)(n1)\left( n \right)\left( {n - 1} \right) common , we get the expression as :
(n)(n1)[(n+1)6(n2)6]=21\left( n \right)\left( {n - 1} \right)\left[ {\dfrac{{\left( {n + 1} \right)}}{6} - \dfrac{{\left( {n - 2} \right)}}{6}} \right] = 21
Cross multiplying the terms , we can write the expression as :
(n)(n1)[n+1(n2)]=21×6\left( n \right)\left( {n - 1} \right)\left[ {n + 1 - \left( {n - 2} \right)} \right] = 21 \times 6
(n)(n1)[n+1n+2]=21×6\left( n \right)\left( {n - 1} \right)\left[ {n + 1 - n + 2} \right] = 21 \times 6
Simplifying the expression , we get
3(n)(n1)=21×63\left( n \right)\left( {n - 1} \right) = 21 \times 6
Cancelling the terms , we get
(n)(n1)=21×2\left( n \right)\left( {n - 1} \right) = 21 \times 2
(n)(n1)=42\left( n \right)\left( {n - 1} \right) = 42
Splitting the value of right hand side , we can write the expression as :
(n)(n1)=7×6\left( n \right)\left( {n - 1} \right) = 7 \times 6
Hence , on comparing the both sides the value of number of vertices of a regular polygon is
n=7n = 7
Thus , the value of regular sides of the polygon is 77 .
Hence , the correct option is (2)\left( 2 \right) .

Note: Corresponding to each combination of nCr{}^n{C_r} we have r!r! permutations, because r objects in every combinations can be rearranged in r!r! ways . Hence , the total number of permutations of n different things taken r at a time is nCr×r!{}^n{C_r} \times r! . Thus nPr=nCr×r!{}^n{P_r} = {}^n{C_r} \times r! , 0<rn0 < r \leqslant n .
Also , some formulas used :
nC1=n{}^n{C_1} = n
nC2=n(n1)2{}^n{C_2} = \dfrac{{n\left( {n - 1} \right)}}{2}
nC0=1{}^n{C_0} = 1
nCn=1{}^n{C_n} = 1