Solveeit Logo

Question

Mathematics Question on Binomial theorem

Let tnt_n denote the nthn^{th} term in a binomial expansion. If t6t5 \frac{t_{6}}{t_{5}} in the expansion of (a+b)n+4(a+ b)^{n+4} and t5t4 \frac{t_{5}}{t_{4}} in the expansion of (a+b)n(a + b)^n are equal, then nn is

A

9

B

11

C

13

D

15

Answer

15

Explanation

Solution

t6t_{6} and t5t_{5} in the expansion of (a+b)n+4(a+b)^{n+4} is
t5=t4+1=n+4C4an+44b4=n+4C4anb4t_{5}=t_{4+1}={ }^{n+4} C_{4} a^{n+4-4} b^{4}={ }^{n+4} C_{4} a^{n} \cdot b^{4}
and t6=t5+1=n+4C5an+45b5=n+4C5an1b5t_{6}=t_{5+1}={ }^{n+4} C_{5} a^{n+4-5} b^{5}={ }^{n+4} C_{5} a^{n-1} b^{5}
t6t5=n+4C5an1b5n+4C4anb4\therefore\, \frac{t_{6}}{t_{5}}=\frac{{n+4} C_{5} \cdot a^{n-1} \cdot b^{5}}{{ }^{n+4} C_{4} \cdot a^{n} \cdot b^{4}}
=n+4C5n+4C4(ba)=n5(ba)(i)=\frac{{ }^{n+4} C_{5}}{{ }^{n+4} C_{4}}\left(\frac{b}{a}\right)=\frac{n}{5}\left(\frac{b}{a}\right)\,\,\,\,\,\,\,\dots(i)
Now, t5t_{5} and t4t_{4} in the expansion of (a+b)n(a+b)^{n} is
t5=t4+1=nC4an4b4t_{5}=t_{4+1}={ }^{n} C_{4} \cdot a^{n-4} \cdot b^{4}
and t4=t3+1=nC3a^n3b3t_{4}=t_{3+1}={ }^{n} C_{3} \cdot \hat{a}^{n-3} \cdot b^{3}
t5t4=nC4an4b4nC3an3b3=n34(ba)(ii)\therefore \,\frac{t_{5}}{t_{4}}=\frac{{ }^{n} C_{4} \cdot a^{n-4} \cdot b^{4}}{{ }^{n} C_{3} \cdot a^{n-3} \cdot b^{3}}=\frac{n-3}{4} \cdot\left(\frac{b}{a}\right)\,\,\,\,\,\,\,\,\dots(ii)
On equating Eqs. (i) and (ii), we get
n5(ba)=n34(ba)\frac{n}{5}\left(\frac{b}{a}\right)=\frac{n-3}{4}\left(\frac{b}{a}\right)
4n=5n15\Rightarrow \, 4 n=5 n-15
n=15\Rightarrow\, n=15