Solveeit Logo

Question

Real Analysis Question on Sequences and Series

Let TT denote the sum of the convergent series
112+1314+1516++(1)n+11n+1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \ldots + (-1)^{n+1} \frac{1}{n} + \ldots
and let SS denote the sum of the convergent series
11214+131618+15110112+n=1an1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \sum_{n=1}^{\infty} a_n
where
a3m2=12m1,a3m1=0, and a3m=14m for mN.a_{3m-2} = \frac{1}{2m-1} , a_{3m-1} = 0, \text{ and } a_{3m} = \frac{-1}{4m} \text{ for } m \in \mathbb{N}.
Then which one of the following is true?

A

T=ST = S and S0S \neq 0.

B

2T=S2T = S and S0S \neq 0.

C

T=2ST = 2S and S0S \neq 0.

D

T=S=0T = S = 0.

Answer

T=2ST = 2S and S0S \neq 0.

Explanation

Solution

The correct option is (C): T=2ST = 2S and S0S \neq 0.