Question
Mathematics Question on limits and derivatives
Let [t] denote the greatest integer ≤ t and {t} denote the fractional part of t. The integral value of α for which the left-hand limit of the function f(x) = \left\lfloor 1 + x \right\rfloor + \frac{\alpha^{2\left\lfloor x \right\rfloor + \left\\{ x \right\\}} + \left\lfloor x \right\rfloor - 1}{2\left\lfloor x \right\rfloor + \left\\{ x \right\\}} at x=0 is equal to α−34, is
Answer
f(x) = \left\lfloor 1 + x \right\rfloor + \frac{\alpha^{2\left\lfloor x \right\rfloor + \left\\{ x \right\\}} + \left\lfloor x \right\rfloor - 1}{2\left\lfloor x \right\rfloor + \left\\{ x \right\\}}
limx→0−f(x)=α−34
⇒ limx→0−[1+⌊x⌋+x+⌊x⌋αx+⌊x⌋+⌊x⌋−1]=α−34
⇒ limh→0−[1−1+−h−1α−h−1−1−1]=α−34
∴ −1α−1−2=α−34
⇒ 3α2–10α+3=0
∴ α=3 or 31
∵ α in integer, hence α=3