Question
Mathematics Question on Fundamental Theorem of Calculus
Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral ∫01[−8x2+6x−1]dx is equal to
A
−1
B
−45
C
817−13
D
817−16
Answer
817−13
Explanation
Solution
∫01[−8x2+6x−1]dx
=∫041(−1)dx+∫41430dx+∫4321(−1)dx+∫83+1743(−1)dx+∫83+171(−3)dx
=−41−41−2(83+17−43)−3(1−83+17)
=817−13
So, the correct option is (C): 817−13