Solveeit Logo

Question

Mathematics Question on Fundamental Theorem of Calculus

Let [t][t] denote the greatest integer less than or equal to tt. Then, the value of the integral 01[8x2+6x1]dx∫_0^1 [ -8x^2 + 6x - 1] dx is equal to

A

1-1

B

54-\frac 54

C

17138\frac {\sqrt {17}-13}{8}

D

17168\frac {\sqrt {17}-16}{8}

Answer

17138\frac {\sqrt {17}-13}{8}

Explanation

Solution

Let t denote the greatest integer less than or equal to t

01[8x2+6x1]dx∫_0^1 [ -8x^2 + 6x - 1] dx

=014(1)dx+14340dx+3412(1)dx+3+17834(1)dx+3+1781(3)dx= ∫_0^\frac 14 (-1)dx + ∫_{\frac 14}^{\frac 34} 0dx + ∫_{\frac 34}^{\frac 12} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{\frac 34} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{1}(-3)dx

=14142(3+17834)3(13+178)= -\frac 14 -\frac 14 - 2 ( \frac {3+\sqrt {17}}{8} - \frac 34) - 3 (1 - \frac {3+\sqrt {17}}{8})

=17138=\frac {\sqrt {17}-13}{8}

So, the correct option is (C): 17138\frac {\sqrt {17}-13}{8}