Question
Mathematics Question on Number Systems
Let [t] be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and f:A→Z be the function f(x)=[log2(x2+[5x3])]. The number of one-to-one functions from A to the range of f is:
20
120
25
24
120
Solution
Prime Factorization
The prime factorization of 2310 is:
2310=2⋅3⋅5⋅7⋅11.
Thus, A=2,3,5,7,11.
Compute f(x)
For each x∈A, compute:
f(x)=⌊log2(x2+5x3)⌋.
For x=2:
f(2)=⌊log2(22+523)⌋=⌊log2(4+58)⌋=⌊log2(528)⌋=⌊log2(5.6)⌋=2.
For x=3:
f(3)=⌊log2(32+533)⌋=⌊log2(9+527)⌋=⌊log2(572)⌋=⌊log2(14.4)⌋=3.
For x=5:
f(5)=⌊log2(52+553)⌋=⌊log2(25+25)⌋=⌊log2(50)⌋=5.
For x=7:
f(7)=⌊log2(72+573)⌋=⌊log2(49+5343)⌋=⌊log2(5588)⌋=⌊log2(117.6)⌋=6.
For x=11:
f(11)=⌊log2(112+5113)⌋=⌊log2(121+51331)⌋=⌊log2(51936)⌋=⌊log2(387.2)⌋=8.
Range of f
The range of f is:
Range of f=2,3,5,6,8.
One-to-One Functions
The number of one-to-one functions from A to the range of f is:
5!=120.
Final Answer:
120.