Solveeit Logo

Question

Mathematics Question on Number Systems

Let [t][t] be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and f:AZf: A \to \mathbb{Z} be the function f(x)=[log2(x2+[x35])]f(x) = \left[ \log_2 \left( x^2 + \left[ \frac{x^3}{5} \right] \right) \right]. The number of one-to-one functions from A to the range of f is:

A

20

B

120

C

25

D

24

Answer

120

Explanation

Solution

Prime Factorization
The prime factorization of 2310 is:
2310=235711.2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11.
Thus, A=2,3,5,7,11A = \\{2, 3, 5, 7, 11\\}.
Compute f(x)f(x)
For each xAx \in A, compute:
f(x)=log2(x2+x35).f(x) = \left\lfloor \log_2\left(x^2 + \frac{x^3}{5}\right) \right\rfloor.
For x=2x = 2:
f(2)=log2(22+235)=log2(4+85)=log2(285)=log2(5.6)=2.f(2) = \left\lfloor \log_2\left(2^2 + \frac{2^3}{5}\right) \right\rfloor = \left\lfloor \log_2\left(4 + \frac{8}{5}\right) \right\rfloor = \left\lfloor \log_2\left(\frac{28}{5}\right) \right\rfloor = \left\lfloor \log_2(5.6) \right\rfloor = 2.
For x=3x = 3:
f(3)=log2(32+335)=log2(9+275)=log2(725)=log2(14.4)=3.f(3) = \left\lfloor \log_2\left(3^2 + \frac{3^3}{5}\right) \right\rfloor = \left\lfloor \log_2\left(9 + \frac{27}{5}\right) \right\rfloor = \left\lfloor \log_2\left(\frac{72}{5}\right) \right\rfloor = \left\lfloor \log_2(14.4) \right\rfloor = 3.
For x=5x = 5:
f(5)=log2(52+535)=log2(25+25)=log2(50)=5.f(5) = \left\lfloor \log_2\left(5^2 + \frac{5^3}{5}\right) \right\rfloor = \left\lfloor \log_2\left(25 + 25\right) \right\rfloor = \left\lfloor \log_2(50) \right\rfloor = 5.
For x=7x = 7:
f(7)=log2(72+735)=log2(49+3435)=log2(5885)=log2(117.6)=6.f(7) = \left\lfloor \log_2\left(7^2 + \frac{7^3}{5}\right) \right\rfloor = \left\lfloor \log_2\left(49 + \frac{343}{5}\right) \right\rfloor = \left\lfloor \log_2\left(\frac{588}{5}\right) \right\rfloor = \left\lfloor \log_2(117.6) \right\rfloor = 6.
For x=11x = 11:
f(11)=log2(112+1135)=log2(121+13315)=log2(19365)=log2(387.2)=8.f(11) = \left\lfloor \log_2\left(11^2 + \frac{11^3}{5}\right) \right\rfloor = \left\lfloor \log_2\left(121 + \frac{1331}{5}\right) \right\rfloor = \left\lfloor \log_2\left(\frac{1936}{5}\right) \right\rfloor = \left\lfloor \log_2(387.2) \right\rfloor = 8.
Range of ff
The range of ff is:
Range of f=2,3,5,6,8.\text{Range of } f = \\{2, 3, 5, 6, 8\\}.
One-to-One Functions
The number of one-to-one functions from AA to the range of ff is:
5!=120.5! = 120.
Final Answer:
120.\boxed{120.}