Solveeit Logo

Question

Mathematics Question on Hyperbola

Let TT and CC respectively be the transverse and conjugate axes of the hyperbola 16x2y2+64x+4y16 x^2-y^2+64 x+4 y +44=0+44=0. Then the area of the region above the parabola x2=y+4x^2=y+4, below the transverse axis TT and on the right of the coujugate axis CC is:

A

46+4434 \sqrt{6}+\frac{44}{3}

B

462834 \sqrt{6}-\frac{28}{3}

C

46+2834 \sqrt{6}+\frac{28}{3}

D

464434 \sqrt{6}-\frac{44}{3}

Answer

46+2834 \sqrt{6}+\frac{28}{3}

Explanation

Solution

The correct answer is (C) : 46+2834 \sqrt{6}+\frac{28}{3}
16(x2+4x)−(y2−4y)+44=0
16(x+2)2−64−(y−2)2+4+44=0
16(x+2)2−(y−2)2=16
1(x+2)2​−16(y−2)2​=1

Hyperbola

A=−2∫6​​(2−(x2−4))dx
A=−2∫6​​(6−x2)dx=(6x−3x3​)−26​​
A=(66​−366​​)−(−12+38​)
A=3126​​+328​
A=46​+328​