Solveeit Logo

Question

Mathematics Question on applications of integrals

Let n=0n3((2n)!+(2n1)(n!))(n!)((2n)!)=ae+be+c\sum_{n=0}^{\infty }\frac{n^{3}((2n)!+(2n-1)(n!))}{(n!)((2n)!)}=ae+\frac{b}{e}+c, where a,b,cZa, b, c \in Z and e=n=01n!e=\displaystyle\sum_{n=0}^{\infty} \frac{1}{n !} Then a2b+ca^2-b+c is equal to _______

Answer

The correct answer is 26.
n=0∑∞​(n!)((2n)!)n3((2n)!)+(2n−1)(n!)​
=n=0∑∞​(n−3)!1​+n=0∑∞​(n−2)!3​+n=0∑∞​(n−1)!1​+n=0∑∞​(2n−1)!1​−n=0∑∞​(2n)!1​
=e+3e+e+21​(e−e1​)−21​(e+e1​)
=5e−e1​
∴a2−b+c=26