Question
Mathematics Question on applications of integrals
Let ∑n=0∞(n!)((2n)!)n3((2n)!+(2n−1)(n!))=ae+eb+c, where a,b,c∈Z and e=n=0∑∞n!1 Then a2−b+c is equal to _______
Answer
The correct answer is 26.
n=0∑∞(n!)((2n)!)n3((2n)!)+(2n−1)(n!)
=n=0∑∞(n−3)!1+n=0∑∞(n−2)!3+n=0∑∞(n−1)!1+n=0∑∞(2n−1)!1−n=0∑∞(2n)!1
=e+3e+e+21(e−e1)−21(e+e1)
=5e−e1
∴a2−b+c=26