Solveeit Logo

Question

Mathematics Question on Vectors

Let
a=i^+j^+2k^,b=2i^3j^+k^\stackrel{→}{a} = \hat{i} + \hat{j} + \hat{2k}, \stackrel{→}{b} = \hat{2i} - \hat{3j} + \hat{k}
and
c=i^j^+k^\stackrel{→}{c}= \hat{i} - \hat{j} + \hat{k}
be three given vectors.
Let v\stackrel{→}{v} be a vector in the plane of a\stackrel{→}{a} and b\stackrel{→}{b} whose projection on c\stackrel{→}{c} is 23\frac{2}{\sqrt3}.
If v.j^\stackrel{→}{v}.\hat{j} = 7 , then v.(i^+k^)\stackrel{→}{v}.(\hat{i}+\hat{k}) is equal to :

A

6

B

7

C

8

D

9

Answer

6

Explanation

Solution

The correct answer is (D) : 9
Let
v=λ1aλ2b,\stackrel{→}{v} = λ_1\stackrel{→}{a} λ_2\stackrel{→}{b},
where λ1,λ2Rλ_1,λ_2 ∈ R
=(λ1+2λ2)i^+(λ13λ2)j^+(2λ1+λ2)k^= (λ_1 + 2λ_2)\hat{i} + (λ_1 - 3λ_2)\hat{j}+ (2λ_1 + λ_2)\hat{k}
∵ Projection of v\stackrel{→}{v} on c\stackrel{→}{c} is 23\frac{2}{\sqrt3}
∴$$\frac{ λ_1 + 2λ_2 - λ_1 + 3λ_2 + 2λ_1 + λ_2}{\sqrt3} = \frac{2}{\sqrt3}
λ1+3λ2=1.........(i)∴ λ_1 + 3λ_2 = 1 ......... (i)
and
v.j^=7λ13λ2=7.........(ii)\stackrel{→}{v}.\hat{j} = 7 ⇒ λ_1 - 3λ_2 = 7 ......... (ii)
from equation (i) and (ii)
λ1=4,λ2=1λ_1 = 4, λ_2 = -1
v=2i^+7j^+7k^∴ \stackrel{→}{v} = 2\hat{i} + 7\hat{j} + 7\hat{k}
v.(i^+k^)=2+7∴ \stackrel{→}{v}.( \hat{i} + \hat{k} ) = 2 + 7
=9= 9