Solveeit Logo

Question

Question: Let 'S<sub>n</sub>' denotes the sum of 1<sup>st</sup> 'n' terms of an A.P. Then the value of S = \(\...

Let 'Sn' denotes the sum of 1st 'n' terms of an A.P. Then the value of S = limx\lim _ { x \rightarrow \infty } r=nf(r)n\sum_{r = n}^{\infty}\frac{f(r)}{n}, where f(n) = S(3n)S(2n)S(n)\frac{S(3n)}{S(2n) - S(n)}

A

3

B

1/3

C

9

D

None of these

Answer

3

Explanation

Solution

S(3n) = 3n2\frac{3n}{2} [2a + (3n –1) d]

S (2n) = 2n2\frac{2n}{2} [2a + (2n –1) d]

S(n) = n2\frac{n}{2} [2a + (n –1) d]

\ S(2n) –S(n) = n2\frac{n}{2} [2 (2a + 2n1\overline{2n - 1} d) –2a – (n –1)d] = n2\frac{n}{2}

[2a + (3n –1) d] = S(3n)3\frac{S(3n)}{3}

\ S(3n)S(2n)S(n)\frac{S(3n)}{S(2n) - S(n)}= 3 = f(n)