Solveeit Logo

Question

Question: Let \(\sqrt{2}\), \(- \sqrt{x} - 1,\) The value of \(\frac{1}{(x + 1)^{2}},x > - 1\)so that \(\sqrt{...

Let 2\sqrt{2}, x1,- \sqrt{x} - 1, The value of 1(x+1)2,x>1\frac{1}{(x + 1)^{2}},x > - 1so that x+1,\sqrt{x + 1}, is continuous at x\sqrt{x} is

A

1

B

0

C

2

D

None of these

Answer

1

Explanation

Solution

f(0)

= limx0f(x)=limx0log(1+x+x2)+log(1x+x2)secxcosx\lim _ { x \rightarrow 0 } f ( x ) = \lim _ { x \rightarrow 0 } \frac { \log \left( 1 + x + x ^ { 2 } \right) + \log \left( 1 - x + x ^ { 2 } \right) } { \sec x - \cos x }

=limx0log((1+x2)2x2)1cos2xcosx=limx0log(1+(x2+x4))sin2xcosx\lim _ { x \rightarrow 0 } \frac { \log \left( \left( 1 + x ^ { 2 } \right) ^ { 2 } - x ^ { 2 } \right) } { 1 - \cos ^ { 2 } x } \cdot \cos x = \lim _ { x \rightarrow 0 } \frac { \log \left( 1 + \left( x ^ { 2 } + x ^ { 4 } \right) \right) } { \sin ^ { 2 } x } \cdot \cos x

= .