Solveeit Logo

Question

Mathematics Question on Sequence and series

Let Sn=∑k=01nn2+kn+k2 and Tn=∑k=01−1nn2+kn+k2, for n=1,2,3,… Then

A

(A) sn<π33

B

(B) Sn>π33

C

(C) Tn<π33

D

(D) Tn>π33

Answer

(A) sn<π33

Explanation

Solution

Explanation:
Given: sn=∑i=01nn2+kn+k2=∑k=011n(11+kn+k2n2)⟨lim1→∞∑k=011n(11+kn+(kn)2)=∫0111+x+x2dx=[23tan−1⁡(23(x+12))]01=23⋅(π3−π6)=π33=23⋅(π3−π6)=π33i.e. Sn<π33Similarly, Tn>π33