Solveeit Logo

Question

Question: Let Sn = 4n∑k=1(-1)k(k+1)/2K2. Then Sn can take value(s)....

Let Sn = 4n∑k=1(-1)k(k+1)/2K2. Then Sn can take value(s).

A

1056

B

1088

C

1120

D

1332

Answer

1056, 1332

Explanation

Solution

The given series is Sn=k=14n(1)k(k+1)/2k2S_n = \sum_{k=1}^{4n} (-1)^{k(k+1)/2} k^2.

First, let's analyze the pattern of the exponent k(k+1)/2(mod2)k(k+1)/2 \pmod 2. This is the kk-th triangular number, TkT_k.

  • For k=1k=1, T1=1T_1 = 1. (1)T1=1(-1)^{T_1} = -1.
  • For k=2k=2, T2=3T_2 = 3. (1)T2=1(-1)^{T_2} = -1.
  • For k=3k=3, T3=6T_3 = 6. (1)T3=+1(-1)^{T_3} = +1.
  • For k=4k=4, T4=10T_4 = 10. (1)T4=+1(-1)^{T_4} = +1.

The pattern of signs for (1)k(k+1)/2(-1)^{k(k+1)/2} repeats every four terms: (1,1,+1,+1)(-1, -1, +1, +1).

Now, let's group the terms of the series in blocks of four. Let jj be the block index, starting from j=0j=0. The terms in the jj-th block are for k=4j+1,4j+2,4j+3,4j+4k = 4j+1, 4j+2, 4j+3, 4j+4.

The sum of a block of four terms, PjP_j, is: Pj=(4j+1)2(4j+2)2+(4j+3)2+(4j+4)2P_j = -(4j+1)^2 - (4j+2)^2 + (4j+3)^2 + (4j+4)^2

We can rearrange this as: Pj=[(4j+4)2(4j+2)2]+[(4j+3)2(4j+1)2]P_j = [(4j+4)^2 - (4j+2)^2] + [(4j+3)^2 - (4j+1)^2]

Using the difference of squares formula, a2b2=(ab)(a+b)a^2 - b^2 = (a-b)(a+b):

(4j+4)2(4j+2)2=((4j+4)(4j+2))((4j+4)+(4j+2))=(2)(8j+6)=16j+12(4j+4)^2 - (4j+2)^2 = ((4j+4)-(4j+2))((4j+4)+(4j+2)) = (2)(8j+6) = 16j+12

(4j+3)2(4j+1)2=((4j+3)(4j+1))((4j+3)+(4j+1))=(2)(8j+4)=16j+8(4j+3)^2 - (4j+1)^2 = ((4j+3)-(4j+1))((4j+3)+(4j+1)) = (2)(8j+4) = 16j+8

So, Pj=(16j+12)+(16j+8)=32j+20P_j = (16j+12) + (16j+8) = 32j+20.

The series SnS_n consists of nn such blocks (since the sum goes up to 4n4n, there are nn blocks of 4 terms, for j=0,1,,n1j=0, 1, \dots, n-1).

Sn=j=0n1Pj=j=0n1(32j+20)S_n = \sum_{j=0}^{n-1} P_j = \sum_{j=0}^{n-1} (32j+20)

Sn=32j=0n1j+j=0n120S_n = 32 \sum_{j=0}^{n-1} j + \sum_{j=0}^{n-1} 20

Using the sum of the first (n1)(n-1) integers, j=0n1j=(n1)n2\sum_{j=0}^{n-1} j = \frac{(n-1)n}{2}:

Sn=32n(n1)2+20nS_n = 32 \frac{n(n-1)}{2} + 20n

Sn=16n(n1)+20nS_n = 16n(n-1) + 20n

Sn=16n216n+20nS_n = 16n^2 - 16n + 20n

Sn=16n2+4nS_n = 16n^2 + 4n

Sn=4n(4n+1)S_n = 4n(4n+1)

Now we test the given values to see which ones SnS_n can take. For SnS_n to be a possible value, nn must be a positive integer.

  1. For Sn=1056S_n = 1056:

4n(4n+1)=10564n(4n+1) = 1056

16n2+4n1056=016n^2 + 4n - 1056 = 0

Divide by 4: 4n2+n264=04n^2 + n - 264 = 0

Using the quadratic formula n=b±b24ac2an = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}:

n=1±124(4)(264)2(4)=1±1+42248=1±42258n = \frac{-1 \pm \sqrt{1^2 - 4(4)(-264)}}{2(4)} = \frac{-1 \pm \sqrt{1 + 4224}}{8} = \frac{-1 \pm \sqrt{4225}}{8}

Since 652=422565^2 = 4225:

n=1±658n = \frac{-1 \pm 65}{8}

Since nn must be positive, n=1+658=648=8n = \frac{-1 + 65}{8} = \frac{64}{8} = 8.

Since n=8n=8 is a positive integer, 1056 is a possible value.

  1. For Sn=1088S_n = 1088:

4n(4n+1)=10884n(4n+1) = 1088

16n2+4n1088=016n^2 + 4n - 1088 = 0

Divide by 4: 4n2+n272=04n^2 + n - 272 = 0

n=1±124(4)(272)2(4)=1±1+43528=1±43538n = \frac{-1 \pm \sqrt{1^2 - 4(4)(-272)}}{2(4)} = \frac{-1 \pm \sqrt{1 + 4352}}{8} = \frac{-1 \pm \sqrt{4353}}{8}

Since 4353 ends in 3, it is not a perfect square. Thus, nn is not an integer, and 1088 is not a possible value.

  1. For Sn=1120S_n = 1120:

4n(4n+1)=11204n(4n+1) = 1120

16n2+4n1120=016n^2 + 4n - 1120 = 0

Divide by 4: 4n2+n280=04n^2 + n - 280 = 0

n=1±124(4)(280)2(4)=1±1+44808=1±44818n = \frac{-1 \pm \sqrt{1^2 - 4(4)(-280)}}{2(4)} = \frac{-1 \pm \sqrt{1 + 4480}}{8} = \frac{-1 \pm \sqrt{4481}}{8}

Since 4481 is not a perfect square (602=3600,702=490060^2=3600, 70^2=4900, 612=3721,692=476161^2=3721, 69^2=4761), nn is not an integer. Thus, 1120 is not a possible value.

  1. For Sn=1332S_n = 1332:

4n(4n+1)=13324n(4n+1) = 1332

16n2+4n1332=016n^2 + 4n - 1332 = 0

Divide by 4: 4n2+n333=04n^2 + n - 333 = 0

n=1±124(4)(333)2(4)=1±1+53288=1±53298n = \frac{-1 \pm \sqrt{1^2 - 4(4)(-333)}}{2(4)} = \frac{-1 \pm \sqrt{1 + 5328}}{8} = \frac{-1 \pm \sqrt{5329}}{8}

Since 732=532973^2 = 5329:

n=1±738n = \frac{-1 \pm 73}{8}

Since nn must be positive, n=1+738=728=9n = \frac{-1 + 73}{8} = \frac{72}{8} = 9.

Since n=9n=9 is a positive integer, 1332 is a possible value.

Therefore, SnS_n can take values 1056 and 1332.