Question
Question: Let Sn = 4n∑k=1(-1)k(k+1)/2K2. Then Sn can take value(s)....
Let Sn = 4n∑k=1(-1)k(k+1)/2K2. Then Sn can take value(s).
1056
1088
1120
1332
1056, 1332
Solution
The given series is Sn=∑k=14n(−1)k(k+1)/2k2.
First, let's analyze the pattern of the exponent k(k+1)/2(mod2). This is the k-th triangular number, Tk.
- For k=1, T1=1. (−1)T1=−1.
- For k=2, T2=3. (−1)T2=−1.
- For k=3, T3=6. (−1)T3=+1.
- For k=4, T4=10. (−1)T4=+1.
The pattern of signs for (−1)k(k+1)/2 repeats every four terms: (−1,−1,+1,+1).
Now, let's group the terms of the series in blocks of four. Let j be the block index, starting from j=0. The terms in the j-th block are for k=4j+1,4j+2,4j+3,4j+4.
The sum of a block of four terms, Pj, is: Pj=−(4j+1)2−(4j+2)2+(4j+3)2+(4j+4)2
We can rearrange this as: Pj=[(4j+4)2−(4j+2)2]+[(4j+3)2−(4j+1)2]
Using the difference of squares formula, a2−b2=(a−b)(a+b):
(4j+4)2−(4j+2)2=((4j+4)−(4j+2))((4j+4)+(4j+2))=(2)(8j+6)=16j+12
(4j+3)2−(4j+1)2=((4j+3)−(4j+1))((4j+3)+(4j+1))=(2)(8j+4)=16j+8
So, Pj=(16j+12)+(16j+8)=32j+20.
The series Sn consists of n such blocks (since the sum goes up to 4n, there are n blocks of 4 terms, for j=0,1,…,n−1).
Sn=∑j=0n−1Pj=∑j=0n−1(32j+20)
Sn=32∑j=0n−1j+∑j=0n−120
Using the sum of the first (n−1) integers, ∑j=0n−1j=2(n−1)n:
Sn=322n(n−1)+20n
Sn=16n(n−1)+20n
Sn=16n2−16n+20n
Sn=16n2+4n
Sn=4n(4n+1)
Now we test the given values to see which ones Sn can take. For Sn to be a possible value, n must be a positive integer.
- For Sn=1056:
4n(4n+1)=1056
16n2+4n−1056=0
Divide by 4: 4n2+n−264=0
Using the quadratic formula n=2a−b±b2−4ac:
n=2(4)−1±12−4(4)(−264)=8−1±1+4224=8−1±4225
Since 652=4225:
n=8−1±65
Since n must be positive, n=8−1+65=864=8.
Since n=8 is a positive integer, 1056 is a possible value.
- For Sn=1088:
4n(4n+1)=1088
16n2+4n−1088=0
Divide by 4: 4n2+n−272=0
n=2(4)−1±12−4(4)(−272)=8−1±1+4352=8−1±4353
Since 4353 ends in 3, it is not a perfect square. Thus, n is not an integer, and 1088 is not a possible value.
- For Sn=1120:
4n(4n+1)=1120
16n2+4n−1120=0
Divide by 4: 4n2+n−280=0
n=2(4)−1±12−4(4)(−280)=8−1±1+4480=8−1±4481
Since 4481 is not a perfect square (602=3600,702=4900, 612=3721,692=4761), n is not an integer. Thus, 1120 is not a possible value.
- For Sn=1332:
4n(4n+1)=1332
16n2+4n−1332=0
Divide by 4: 4n2+n−333=0
n=2(4)−1±12−4(4)(−333)=8−1±1+5328=8−1±5329
Since 732=5329:
n=8−1±73
Since n must be positive, n=8−1+73=872=9.
Since n=9 is a positive integer, 1332 is a possible value.
Therefore, Sn can take values 1056 and 1332.