Solveeit Logo

Question

Question: Let $S_n = \sum_{k=1}^{n} \frac{n}{n^2 + kn + k^2}$ and $T_n = \sum_{k=0}^{n-1} \frac{n}{n^2 + kn + ...

Let Sn=k=1nnn2+kn+k2S_n = \sum_{k=1}^{n} \frac{n}{n^2 + kn + k^2} and Tn=k=0n1nn2+kn+k2T_n = \sum_{k=0}^{n-1} \frac{n}{n^2 + kn + k^2} for n = 1, 2, 3, ...... Then

A

S_n < \frac{\pi}{3\sqrt{3}}

B

S_n > \frac{\pi}{3\sqrt{3}}

C

T_n < \frac{\pi}{3\sqrt{3}}

D

T_n > \frac{\pi}{3\sqrt{3}}

Answer

A, D

Explanation

Solution

The sums SnS_n and TnT_n can be rewritten as Riemann sums for the integral 0111+x+x2dx\int_0^1 \frac{1}{1+x+x^2} dx. Sn=k=1n1/n1+(k/n)+(k/n)2S_n = \sum_{k=1}^{n} \frac{1/n}{1 + (k/n) + (k/n)^2} is a right Riemann sum. Tn=k=0n11/n1+(k/n)+(k/n)2T_n = \sum_{k=0}^{n-1} \frac{1/n}{1 + (k/n) + (k/n)^2} is a left Riemann sum. The function f(x)=11+x+x2f(x) = \frac{1}{1+x+x^2} is strictly decreasing on [0,1][0, 1] because its derivative f(x)=1+2x(1+x+x2)2f'(x) = -\frac{1+2x}{(1+x+x^2)^2} is negative for x[0,1]x \in [0, 1]. The integral evaluates to 0111+x+x2dx=π33\int_0^1 \frac{1}{1+x+x^2} dx = \frac{\pi}{3\sqrt{3}}. For a strictly decreasing function, the right Riemann sum is always less than the integral, and the left Riemann sum is always greater than the integral. Therefore, Sn<01f(x)dxS_n < \int_0^1 f(x) dx and Tn>01f(x)dxT_n > \int_0^1 f(x) dx. This implies Sn<π33S_n < \frac{\pi}{3\sqrt{3}} and Tn>π33T_n > \frac{\pi}{3\sqrt{3}}.